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Abstract

We introduce a novel approach for eliciting relative poverty rankings that aggregates
partial orderings reported independently by multiple neighbors. We first identify the
conditions under which the method recovers more accurate rankings than the com-
monly used Borda count method. We then apply the method to secondary data from
rural Indonesia and to original data from urban Côte d’Ivoire. We find that the ag-
gregation method works as well as Borda count in the rural setting but, in the urban
setting, reconstructed rankings from both the pairwise and Borda count methods are
often incomplete and sometimes contain ties. This disparity suggests that eliciting
poverty rankings by aggregating rankings from neighbors may be more difficult in ur-
ban settings. We also confirm earlier research showing that poverty rankings elicited
from neighbors are correlated with measures of poverty obtained from survey data,
albeit not strongly. Our original methodology can be applied to many situations in
which individuals with incomplete information can only produce a partial ranking of
alternatives.
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1 Introduction

Many developmental interventions aim to identify the poor (Ravallion, 2000, 2009, 2015).

In some instances, such as when poverty is highly concentrated, community-based or spatial

targeting may be sufficient (Burke et al., 2021; Elbers et al., 2007). However, identifying the

poor usually requires within-community targeting mechanisms.1

Various strategies have been developed to identify the poorest members of communities

(Grosh et al., 2022). In the absence of universal administrative data such as income tax

filings, one strategy is to survey individuals or households and rank them on the basis of the

information they provide. One famous example is the eligibility assignment of the Progresa

Cash Transfer program in Mexico (Skoufias et al., 1999). In practice, approaches vary in the

type of information that is collected: detailed surveys on consumption and income (Deaton,

2019; Grosh and Glewwe, 2000) or light surveys on poverty indicators—e.g., assets (Elbers

et al., 2003, 2007) or answers to subjective well-being questions (Ravallion, 2000, 2014;

Ravallion and Lokshin, 2001; Ravallion et al., 2016). These methods all have shortcomings:

detailed surveys are expensive and time-consuming; short surveys are thought to be limited

due to their simplicity and model fit, and may be more easily manipulable by respondents

(Banerjee et al. 2020); and subjective well-being is often not well correlated with material

well-being, either over time or across countries (Blanchflower and Oswald, 2004; Fafchamps

and Shilpi, 2008; Layard, 2009). Furthermore, the rankings are affected by measurement

error and possible response bias or manipulation, leading to mis-assignment (Cruces et al.,

2013).2

Another method is to delegate the targeting decision to the local level. For example, local

chiefs in Malawi were tasked with identifying poor households eligible for a large farming

input subsidy (Basurto et al., 2020). However, a key concern with this approach is the

potential for local capture or nepotism, as shown in studies such as Alatas et al. (2019).

To mitigate this, one can solicit relative rankings from community members themselves—

often gathered in a focus group. The focus groups are asked to produce complete relative

poverty rankings of a set of individuals or households, typically members of their village or

1Such as the Core Welfare Indicators Questionnaire (CWIQ) or the Simple Poverty Scorecards (SPS)
pioneered by the World Bank and used in many surveys across the world (Diamond et al., 2016; Premand
and Barry, 2022).

2Measurement error arises when respondents have only imperfect knowledge of the answer—e.g., because
they do not recall or do not have full information about others. This noise leads to errors of assignment—
known as type I and type II errors (Ravallion, 2015). Response bias arises when respondents expect a benefit
from being assigned to a high or low rank—such as a welfare benefit from being classified as ’below the
poverty line’. To the extent that everyone faces the same incentive to bias their survey responses downward
or upward, this need not lead to distorted rankings. But it can result in mis-classification of respondents as
poor or non-poor (Ravallion, 2008).
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neighborhood (Alatas et al., 2012). The main advantages of this method are that it is, on

the one hand, simpler and cheaper to implement than detailed surveys, and, on the other

hand, more transparent than relying on the local elite alone. This approach has been shown

to produce reasonable rankings in a rural context (Trachtman et al., 2022). It has also

been shown to yield valuable information in domains other than poverty rankings, notably

entrepreneurial potential (Hussam et al., 2022) and long-term poverty (Trachtman et al.,

2022). It is, however, vulnerable to local prejudices and views about who are the deserving

poor (Alatas et al., 2019; Galasso and Ravallion, 2005; Ravallion, 2008). It also assumes

that a small number of community members have the necessary information to provide all

the requested rankings (Alatas et al., 2016).

While relying on key informants can produce meaningful rankings in small rural hamlets,

it is unclear whether it applies to urban and peri-urban areas with a more mobile population

and less dense social networks. One study in an urban setting (Beaman et al. 2021) finds

little evidence that individuals can accurately assess whether randomly selected community

members are poor. They nonetheless target transfers to the poor modestly better than would

be attributable to chance, suggesting that they possess partial but relevant information. If

this diffuse information can be combined in a meaningful way, it could be used to derive an

aggregate poverty ranking.3

This paper proposes a novel methodology for aggregating partial rankings and implements

it in two settings: rural Indonesia and urban Africa. For Indonesia, we rely on data collected

by Alatas et al. (2012) in 640 rural communities. For urban Africa, we collect original data in

34 poor neighborhoods of Abidjan, a large metropolis of more than five million inhabitants in

Côte d’Ivoire, West Africa. The latter setting is well-suited because poverty measurement is

a topical policy issue in the region.4 In Abidjan, we ask respondents—called observers—in 34

different neighborhoods to rank up to 14 target households in that neighborhood, which may

not necessarily be the same 14 households. Limited overlap between the sets of households

ranked by each observer can lead to bias when relying on rankings averaged across observers,

as was done by Alatas et al. (2012). We instead develop a methodology to aggregate all the

available—but partial—information provided by the respondents.

3Alatas et al. (2016) note that, even in a rural setting, lack of information leads to partial rankings
because respondents are unable or unwilling to rank certain individuals.

4In particular, in 2019, Côte d’Ivoire started to roll out its universal health care coverage (CMU—
Couverture Maladie Universelle) that provides free access to health care to the poorest members of a com-
munity. This is a context where, as we show, poverty levels are highly heterogeneous within neighborhoods,
which means that geography-based targeting is insufficient. Under the ongoing government scheme, the poor
are identified using a combination of observables and community assessment with local leaders. Whether
leveraging peer rankings can improve the targeting of the program is an unanswered question in this and
similar contexts.
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We then compare the reported and aggregated rankings to poverty rankings based on

household survey data in Indonesia and Côte d’Ivoire. In both countries, target households

answered a survey covering income, consumption, assets, and household characteristics. A

measure of household consumption per capita is then constructed for each target household

using this survey data. For Côte d’Ivoire we also construct two summary statistics often used

in practice: a Proxy Means Test (PMT) index of poverty based on survey data on assets

and durables;5 and a Poverty Probability Index (PPI) calculated on answers to a survey

module proposed by Innovations for Poverty Action (IPA). We then compare the reported

and constructed aggregate rankings from peer-to-peer comparisons to the rankings produced

by the PMT and PPI indices as well as by various measures of consumption.

We have three main results. The first result is methodological. Building on the work

of Tangian (2000), we propose a method for aggregating reported rankings from multiple

observers. This method constitutes an alternative to the commonly used Borda count method

that averages these reported ranks. In contrast, our method first averages pairwise rankings

and then ’stitches’ them together to produce an aggregate ordering. We show that this

method outperforms the Borda method when observers only rank some of the available

alternatives (e.g., some of their neighbors) and when they rank alternatives whose true

ranks are proximate (e.g., the ranked neighbors are all poor or are all rich). We also develop

a simple way of obtaining robust confidence intervals for individual ranks.

The second set of results is empirical. We first show that our method can work by

applying it to the peer rankings data obtained by Alatas et al. (2012). With this rural

dataset, our method yields complete rankings without ties in all villages and these rankings

are nearly identical to those produced by the Borda rank-averaging method used by the

authors. In the urban context of Abidjan, however, we find that the estimated aggregate

rankings fall short of expectations, due to two critical shortcomings: (1) they are incomplete

in all cases—sometimes severely so; and (2) they often contain ties. In spite of this, the

estimated orderings obtained from our method tend to outperform those obtained by the

Borda method or by an algorithm commonly used in sports rankings (e.g., Zermelo 1929,

Bradley and Terry 1952). These empirical findings highlight the limitations of using peer

rankings in high-density neighborhoods: most respondents simply do not know many of the

households around them. As a result, there is little information to be harnessed from them.

This means that the very areas for which geographical targeting is known to be ineffective—

dense urban neighborhoods—are also areas where peer rankings appear to be of little use,

even though people live in close proximity to each other. Using a higher number of observers

should in principle yield more precise and complete rankings, albeit at a higher cost.

5We apply the weights used by the Government of Côte d’Ivoire to construct the PMT index.
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Our third set of results is that rankings elicited from neighbors are not highly predictive

of consumption measures collected from survey data. This applies both to the pairwise

rankings reported by individual respondents as well as to the estimated aggregate rankings

obtained by combining individual answers. Rankings from the rural Indonesia data are

nonetheless better than those from Abidjan at predicting consumption rankings based on

individual survey data—although with a relatively low R2, as already noted by Alatas et

al. 2012. We also find that the PMT, PPI, and consumption measures from the survey are

only moderately correlated with each other, suggesting the presence of measurement errors

in those measures as well. But these poverty assessments are all more predictive of each

other than rankings are of them. For Abidjan, we also investigate whether reported rankings

correlate better with the conspicuous consumption expenditures of the target households.

They do not.

These results help provide some sense of when and how the method can yield useful

information. The individual informants in the Abidjan empirical application were asked to

rank 14 households in neighborhoods that often contain more than 200. In a large number

of cases, informants did not know the target households and, as a result, the fraction of re-

ported rankings falls far below the number of rankings needed to reliably construct aggregate

rankings for each neighborhood. This result stands in contrast with the good performance

of our method when it is applied to the rural data of Alatas et al. (2012) where reported

rankings are more complete and consistent across observers. This suggests that a success-

ful implementation of our method requires a sufficiently large ratio of informants to target

households, and a sufficiently limited geographical area from which the target households

and informants are selected.

We also investigate whether including self-ranks improves accuracy: since observers pre-

sumably have better information about themselves, they should be able to rank themselves

relative to others. To this effect, a randomly selected half of the Abidjan respondents are

asked to rank themselves among the 14 target households; the other half are only asked to

rank the targets. We find that the way observers rank themselves compared to others near

them is unhelpful for the purpose of identifying the relatively poor: dropping self-ranks im-

proves targeting accuracy somewhat. This appears driven by poor households over-stating

their own material welfare relative others (as in Cruces et al. (2013)), suggesting that there

may be a psychological cost to admitting one’s own poverty (e.g., Bramoullé and Ghiglino,

2022; Ghiglino and Goyal, 2010).

The particularly low correlation between reported rankings and rankings based on sur-

vey data in Abidjan also suggests that, relative to rural Indonesia, urban and peri-urban

areas may experience too much income variation and spatial mobility to allow neighbors to
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accurately guess each other’s relative economic standing. Alternatively, the challenge may

come from social considerations. On the one hand, social arrangements forcing households

to share resources with those around them may incentivize relatively well-off individuals to

hide their income (Baland et al., 2011)—to appear ‘average’ to avoid attracting requests for

assistance aimed at those who appear too rich. Consistent with this, we find that self-ranking

respondents tend to rank themselves richer than how others rank them. On the other hand,

as we show in a companion paper using data from the same Abidjan setting, relatively poor

households may be keen to manipulate their consumption/behavior to appear ‘average’ and

avoid being stigmatized as too poor (Dupas et al., 2024). The combination of these two

forces creates a ‘race to (appear in) the middle’ that is a possible explanation for why it is

difficult for observers in Abidjan to infer the incomes of their neighbors.

While ultimately ineffective in our Abidjan setting, the novel methodology we propose

in this paper applies to other situations in which individuals have specific information that

allows them to produce a partial ranking of alternatives. Examples includes: farmers ex-

perimenting with new crops and techniques; workers observing co-workers; and consumers

trying new products. In all these cases, individual economic agents have specific information

that enables them to correctly rank some of the available options, but not all. One solution

to this aggregation problem is to take the average of the ranks given by different observers.

This approach, however, does not give all options equal weights, since the sets of ranked

options differ across observers in ways that are not random. As we show in Section 2, aver-

aging ranks can produce biases whenever there is insufficient overlap in ranked sets across

observers. It also penalizes options only known by a few agents, such as those that have

only been newly introduced. This in turns generates inertia and discourages innovation. Our

method overcomes some of these problems.6

The remainder of the paper is organized as follows. Section 2 presents the main method-

ological contribution of this paper. Section 3 tests the performance of our proposed method

in the context of rural Indonesia. Section 4 explains the experimental design and data col-

lection used in Côte d’Ivoire. Section 5 describes the empirical rankings obtained in Côte

d’Ivoire using various methods. Section 6 investigates whether rankings are informative in

the Côte d’Ivoire data while Section 7 examines the self-rank randomized treatment. Section

8 looks at characteristics that predict the propensity to rank others. Section 9 concludes.

6Truthful reporting is necessary for our method to yield correct rankings, but this is also true of other
approaches.
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2 Methodology

Our task is to aggregate orderings of alternatives that are provided by a multiplicity of

respondents, each of which only observes a subset of alternatives. Our objective is to obtain

an aggregate ordering that is as close as possible to the average ordering of alternatives in

the population. The aggregation of orderings is a fundamental element of the field of social

choice theory, which emerged from seminal contributions made by Condorcet, Borda, and

Laplace in the 18th century (List, 2022). We focus our attention on a pairwise method

for aggregating individual preference orderings. In this method, individual observers are

asked to rank a series of alternatives. From these reported orderings, the researcher extracts

comparisons between pairs of alternatives, which are then averaged across observers—in a

way similar to majority voting. These averaged pairwise comparisons are then ‘stitched

together’, in a way we describe below, to produce an aggregate ordering of preferences.

We start by noting that, if observers all rank the same alternatives, the asymptotic prop-

erties of the pairwise method are identical to the two most commonly used methods for

aggregating preferences over alternatives: the Borda count method, which averages the ordi-

nal rankings of alternatives reported by individual observers; and the scoring method, which

averages the scores given to alternatives by individual observers. Since the scoring method

requires more precise reporting by observers and is thus less practical in most contexts, we

focus our attention to the pairwise method and Borda count methods, which both start from

the same ordinal reports.

Next, we show that the pairwise method we develop performs better than the Borda count

under some realistic conditions. These conditions - that individual observers often rank only

partly overlapping subsets of alternatives - are directly relevant to poverty rankings. For

instance, some observers only rank low alternatives while others only rank high alternatives.

In many such situations, the pairwise method produces the true aggregate ordering while

the Borda count has a large mean-square-error. We illustrate this feature with examples and

simulations. We end the section with a Monte Carlo analysis of the performance of our rank

estimator in the presence of mismeasurement.

2.1 Intuition

The task of aggregating income orderings of neighbors reported by different observers is

closely related to a large literature in social choice theory that studies the aggregation of

preference ordering across individual agents (e.g., Gehrlein, 1983). Ever since the founda-

tional work of Condorcet, Laplace and Borda, this literature has followed three main tracks:

a majority voting approach, which was the focus of Condorcet’s attention; a social welfare
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scoring approach pioneered by Laplace; and a ranking methodology proposed by Borda—see,

for instance, List (2022) for a recent survey of this literature.

In the majority voting approach, individuals vote on pairs of alternatives and these votes

are then combined either to determine an aggregate ordering or, more simply, to designate

a winner among all the alternatives. As already noted by Condorcet himself, this approach

need not result in a transitive ordering: cycles may emerge that involve all or a fraction

of the alternatives (Gehrlein, 1983). The approach favored by Borda instead turns individ-

ual preference orderings into normalized ranks that are then summed across individuals to

construct an aggregate ranking of all the alternatives. While this rank averaging approach

eliminates the possibility of ties, it does not rule out ties between alternatives.7 The use-

fulness of these two approaches extends well beyond politics to include, among others, the

ranking of applicants to a job and that of students in an exam.8 The approach proposed by

Laplace has led to welfare economics, whereby alternatives are chosen depending on their

social welfare value.

A lesser-known yet insightful article by Tangian (2000) offers a useful bridge between the

three approaches.9 This author notes that, under fairly general assumptions that exclude

coordinated action between agents, the Condorcet majority voting approach converges to

the same aggregate ordering as the Laplace social welfare approach if the number of voters

is large enough; and that, under similar conditions, the social welfare approach converges to

the same ordering as the Borda rank averaging approach. Since the rank averaging approach

always yields a transitive ordering (with possible ties), an immediate corollary is that, with

a large enough number of voters, Condorcet cycles disappear. Tangian shows that, under

some fairly realistic conditions, pairwise voting results in a transitive ordering with a high

probability even with a relatively small number of voters—such as those involved in election

polls. The Tangian results may be of little use in parliamentary politics because coordinated

action by a small number of parties effectively rules it out. But it is useful in aggregating

income rankings reported by many independent observers.

In the rest of this Section, we extend the Tangian results to settings in which individual

agents are only able to rank some of the alternatives relative to each other. This could arise,

7As already noted by Laplace, the averaging approach also allows the use of cardinal information avail-
able to individual agents (i.e., information about the distance between two alternatives), in which case the
averaging is done on scores, not ranks. This possibility receives little attention here because, in our empirical
setting, cardinal information was not collected from ranking agents.

8For instance, each member of a hiring committee may start by ranking or scoring a subset of applicants.
The committee then takes the average of these ranks or scores to construct an aggregate ranking, and may
resort to voting to select a candidate or to break ties. Similar procedures are customarily followed when
marking exams, assigning prizes or grants, and selecting papers for a conference.

9We are grateful to an anonymous referee for pointing this work to us.
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for instance, because agents do not have sufficient information on all alternatives, or because

ranking all alternatives is too costly for them. We call the alternatives they are willing or

able to rank their rankable set. The majority voting approach still applies in this setting,

but agents vote only on pairs of alternatives in their rankable set. Tangian (2000) shows

that, as long as rankable sets are distributed randomly across agents, aggregating orderings

through majority voting still converges to a transitive ordering—provided that some matrix

rank conditions are satisfied (see below).

A similar extension can be made for rank averaging provided that ranks are normalized

before averaging, to account for the varying size of each observer’s rankable set. More

precisely, let the rankable set of observer k have size mk and let the ranks reported by

observer k for alternative i be denoted as rki ∈ {1, 2, ...,mk}. The normalized rank given by

observer k to alternative i is then defined as zki ≡ rki
mk+1

. With this normalization, observers

with a rankable set of size 1 report a rank of 0.5 (no information); those with two observations

report normalized ranks {1/3, 2/3}; those with three have normalized ranks {1/4, 2/4, 3/4};
etc.

Importantly, the requirements for the random assignment of observers are stricter than

for ranking through majority voting: individual alternatives have to be assigned randomly to

agents, not just rankable sets. The reason for this stricter requirement can be illustrated with

a simple example. Consider two sets of observers who all share the same latent preferences

over five alternatives y1 < y2 < y3 < y4 < y5. One set of observers is assigned rankable

set {y1, y2, y3} and the other set of observers is assigned rankable set {y3, y4, y5}. If we

ask all observers to vote on each possible pair of alternatives in their rankable set, we can

recover the true ordering by ‘stitching together’ their votes on the two sets, given that they

have alternative y3 in common. Averaging ranks, however, does not produce the correct

ordering. With m1 and m2 observers in each set, respectively, the average ranks for the five

alternatives are {1/4, 2/4, 0.75m1+0.25m2

m1+m2
, 2/4, 3/4}, which shows that not only are options y2

and y4 tied, option y3 is ranked above y4 or below y2 depending on the relative number of

observers of each set—or tied with them if m1 = m2. The correct ordering can, however,

be recovered if observers are all assigned a randomly selected set of three alternatives, in

which case the averaged normalized rankings converge to {1/4, 1.5/4, 2/4, 2.5/4, 3/4} as the

number of observers increases—which is the same ranking as that obtained by ‘stitching

together’ two orderings sharing a common alternative.

These observations are the main motivation behind our effort to develop a methodology

that relies on a pairwise majority voting approach rather than rank averaging when rankable

sets vary across observers and the researcher has reasons to expect true ranks to be correlated

within rankable sets—which arises, for instance, because some observers see mostly low-
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ranked alternatives (e.g., they have poor neighbors) while others see mostly high-ranked

alternatives (they have rich neighbors).

2.2 Theory

2.2.1 Extending Tangian’s results to pairwise rankings

To formalize our intuition, we borrow heavily from Tangian (2000) whose results we start by

summarizing here. Consider n individuals each with a latent ordering on two alternatives

yA and yB which we denote by a utility function uk(yi) for agent k and alternative yi. We

say that yA is socially preferred to yB if:

n∑
k=1

uk(yA) >
n∑

k=1

uk(yB)

In the empirical part of the paper, we consider the special case in which uk(yi) becomes

observer k’s belief Ek[yi] about household i’s income yi and we wish to rank yA higher than

yB is the observers’ average belief is higher for yA than yB.

Following Tangian (2000), we decompose the cardinal utility uk(yi) into an ordinal part

ηk (i.e., the ordering) and a cardinal residual ξk (i.e., the difference in value between uk(yA)

and uk(yB)). Formally: let ηk = 1 if uk(yA) ≥ uk(yB), i.e., yA is ranked higher than yB, and

ηk = 0 otherwise; and define:

ξk = |uk(yA)− uk(yB)|

With this notation, a majority of observers ranks yA above yB if
∑n

k=1 η
k > n/2 or, equiva-

lently, if:
n∑

k=1

(2ηk − 1) > 0 (1)

Similarly, yA is socially preferred to yB if:

n∑
k=1

(2ηk − 1)ξk > 0 (2)

Using this approach, Tangian (2000) shows that the probability that an ordering obtained

by majority voting (1) differs from an ordering based on reported utilities (2) converges to

0 as n → ∞ if ηk and ξk are independent random variables.10 Tangian (2000) also offers an

approximation formula for this difference in finite samples.

10There is also a special ‘knife-edge’ case where
∑n

k=1 ηk = n/2, in which case this probability converges
to 1/2, i.e., the two alternatives are equally ranked and the outcome of the vote is random.
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This result generalizes to multiple alternatives m > 2. In this case, we have m(m− 1)/2

unordered pairs of alternatives on which we have elicited rankings from observers, thereby

mimicking majority voting on all pairs of alternatives. This leads to Tangian (2000)’s main

result [Theorem 1] that the probability that the ordering obtained from pairwise majority

voting (equation 1) is equal to the ordering based on summing utilities (equation 2) tends

to 1 as n → ∞, again assuming that ηi and ξi are independent random variables across

observers and alternatives—and ruling out ties. An immediate consequence of this theorem

is that, under the same conditions, the fraction of random samples in which the pairwise

majority voting ordering is not transitive vanishes as n → ∞ [Theorem 2]. This follows

from the property that, in the absence of ties, an ordering obtained by averaging utilities

is always transitive by construction. Tangian (2000) [Theorem 3] also notes that these

properties extend to Borda counts, that is, to orderings obtained by averaging normalized

ranks instead of utilities, where, as before, a normalized rank is defined as:

zki ≡ rki
m+ 1

(3)

where the rki ∈ {1, 2, ...,m} are the ordinal ranks reported by agent k and m is the number

of alternatives ranked by that agent.

The asymptotic equality between orderings obtained from pairwise majority voting and

Borda counts remains if each agent k observes only a randomly selected subset mk of the m

alternatives. This derives directly from the fact that Theorem 1 only depends on the two

pairwise inequalities (1) and (2), and these can be modified to allow for a varying number of

nij observations per {i, j} pairs of alternatives. Thus, as long as each nij→ ∞ for each {i, j}
pair, Theorem 1 holds and, by consequence, also Theorems 2 and 3 as summarized here.11

Things are different if the mk subsets of alternatives are selected such that the true ranks

ri (or true values U(yi)) are correlated within subsets. This arises when certain observers

only see low-ranked alternatives while others only see high ranked ones. In this situation,

orderings based on Borda counts no longer coincide with orderings based on reported utilities

or values, and Theorem 3 breaks down. The example presented earlier provides a proof a

contrario that Borda counts need not converge to true orderings in the presence of rank

correlation in mi subsets. It follows that when observers self-select the alternatives that they

rank, orderings based on Borda counts may be unreliable due to the possible (unobserved)

correlation in true ranks that this self-selection may generate. In such situations, we may

still ask observers to report their value or score uk(yi) for each observation in their subset.

11This does not, however, apply to the approximation formula for the difference between the two methods,
which would have to be adapted to reflect the varying number of observations per pair of alternatives. We
do not use the approximation formula in this paper.
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But this raises the level of reporting difficulty for respondents—which may lead to excess

observation noise, response bias, or sample attrition. It also requires that each observer use

the same scoring scale, a requirement that may not hold in practice, e.g., because observers

have different scoring rules. Furthermore, this system is manipulable: observers can increase

the weight of their preferences in the final average by artificially inflating the range of their

scores.

In contrast, pairwise comparisons (1) remain relatively unaffected: their asymptotic prop-

erties are unchanged as long as, for each specific {i, j} pair of alternatives, the observed

“votes” come from a sample of observers that is representative of the distribution of utilities

or beliefs in the study population. This requirement can be satisfied if the assignment of

rankable subsets to observers is orthogonal to their (unobserved) preference ranking over all

latent alternatives. This holds even if true ranks are correlated within rankable subsets., i.e.,

some rankable subsets are top-heavy while others are bottom-heavy. It can also be satisfied

even if each observer self-selects his or her rankable set mk, as long as the preferences of that

observer over all latent alternatives is independent of their selected mk set. Put differently,

it does not matter for equation (1) that certain observers self-select to vote on pairs of al-

ternatives that they rank lowly, while others do the opposite—as long as the distribution of

the values uk(yi) or beliefs Ek[yi] (or ranking scale) of these observers is representative of the

population of observers. This condition is satisfied when the preferences of observers over all

latent alternatives are independent of their observed rankable set, in which case each sample

of pairwise comparisons comes from a representative sample.

This leads to the following proposition:

Proposition 1: Assume that all observers share the same social welfare function u(yi) but

have different rankable sets Mk. Let Ms ⊂ M denote the set of all the alternatives that

belong at least one Mk. Let C be the set of all consecutive pairs in the full ordering implied

by u(yi). Then, irrespective of how alternatives are assigned to rankable sets:12

1. The scoring method recovers a correct full ordering of all the alternatives in Ms

2. The voting method recovers a correct full ordering of all the alternatives inMs provided

that all the pairs of alternatives in C appear in at least one Mk.

3. The voting method recovers a correct partial ordering of all the alternatives in Ms

provided that some the pairs of alternatives in C appear in at least one Mk.

12Part 2 of the Proposition guarantees a unique ordering of all ij pairs that appear in at least one Mk.
Other pairs may also be rankable by combining information from different rankable sets Mk, a point we
revisit in detail in the next subsection.
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Proof : Part 1 follows directly from the assumptions of common preferences and no reporting

error. For Part 2, the proof is in two parts. (1) The assumption of common preferences and

no reporting error implies that all ranked pairs are correctly ranked. (2) If all the pairs in

C are correctly ranked, the full ordering of the pairs in Ms can be recoved by daisy-chaining

these pairs together (see the next subsection for an algorithm that achieves this). Once such

a chain has been found, all the remaining pairwise ranks are subsumed in the full ordering.

Part 3 follows from Part 2 and the fact that if a pair in C is missing from the pairs in Mk,

than the two alternatives can not be ranked relative to each other.

Proposition 1 does not, however, apply to Borda counts. This is because, as examplified

in the previous sub-section, the normalized rankings based on Borda counts from each Mk

are biased estimates of the true normalized ranks zi in M . Indeed, they ignore the fact that

the lowest rank alternative in a particular Mk may be ranked higher in M and, similarly, the

highest rank alternative in a particular Mk may be ranked lower in M . Furthermore, the

spacing between alternatives appearing in Mk is also likely to be irregular, with large gaps

in zi between some pairs and small gaps between others. It follows that all the normalized

rankings in each Mk set are biased representations of the true normalized ranks. Averaging

these biased estimates over observers does not eliminate the bias. 13 We expect the bias to

be particularly large when alternatives in rankable sets Mk are correlated in the sense that

alternatives i and j are more likely to be in a set Mk if |zi − zj| is small than if it is large.

The reason is that, when rankable sets are correlated, the lowest ranked alternative in some

of them are highly ranked in M and vice versa.

Definition: Rankable sets are said to be correlated when

E

[∑
k

∑
i∈Mk

∑
j∈Mk

(zi − zj)
2

]
< E

∑
k

∑
i∈Mk

∑
j /∈Mk

(zi − zj)
2


From this analysis, it appears that, when observers only rank Mk subsets, the scoring

method a priori dominates the voting (pairwise comparison) method and, certainly, the

Borda count method. The problem is that it requires each observer to score using the

exact same u(yi). Since any monotonic transformation of the u(.) function yields the same

normalized ranks zi, there is no a priori reason to expect observers to score using the same

u(.) function even when they have the same ordering over alternatives. When observers

13We conjecture that the bias may disappear if each alternative in an Mk is randomly assigned to the
observer (i.e., there is no self-selection in which alternative he/she observes) and there is a large enough
number of observers to eliminate the small sample bias that arises even in that case. Proving this formally
is left for future work.
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only rank Mk subsets, averaging u(yi) scores subject to different monotonic transformations

is not guaranteed to yield an average score from which the true normalized ranks can be

recovered14. It follows that the scoring method only fits situations in which (1) scores have

an intuitive cardinal meaning to observers and/or (2) observers are given precise instructions

on how to score (e.g., range, average, etc). In situations where these conditions are unlikely

to hold, aggregating pairwise comparisons dominates because it does not require making

cardinal assumptions about u(y).

The above results can be generalized to situations in which observers have different pref-

erences u(yi). In this case, the researcher is interested in aggregating preferences to get the

population ordering of alternatives. This requires selecting a random set of observers from

the population of interest. As demonstrated by Tangian (2000), the ordering of alternatives

recovered from a sample can be regarded as a close approximation of the population prefer-

ences if that sample is large enough. This also extends to the case where observers want to

report a common true ranking of alternatives, but they either observe or report these true

rankings with error. In such cases, averaging scores or pairwise ranks over observers should

closely approximate the true ranks if the number of observers is large enough.

2.2.2 Simulated Performance of Ranking Methods

To illustrate this point, we simulate the performance of the Borda count and pairwise meth-

ods of preference aggregation when observers’ rankable sets only partially overlap with each

other. To isolate the role of rankable sets, we assume that all observers have the same prefer-

ence ordering over all the alternatives in set M and that they report these orderings without

error.15 This means that the only source of statistical variation is the composition of the

rankable subsets Mk.

Results are illustrated in Figure A1 for 14 observers ranking a set of 30 households, which

aligns with our Côte d’Ivoire study’s parameters. Each panel presents the true ordering in

blue. The orderings derived from the Borda and pairwise methods are depicted in red

and black, respectively. In the top left graph, observers can observe only S = 5% of the

households on average, and the mistake value is V = 0.05.16 Given the minimal overlap

between the observers, both methods perform poorly at recovering the correct ranking.

However, the pairwise method performs better in predicting the correct order by combining

14Precision falls when the Mk’s are small relative to M , and a larger sample is needed to achieve the same
level of precision.

15Given Tangian (2000)’s results, these assumptions are equivalent to assuming that we have a large
enough sample for the aggregation of reported orderings to match the true ordering within rankable sets.

16A higher mistake number indicates greater errors in ranking income. This number represents the
standard deviation of a log-normal distribution of the mistake, ultimately multiplied by the true income,
which is assumed to follow a normal distribution with a standard deviation of 1.
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the orderings from different sets. In Figure A1 (c), we also observe that the ranks obtained

using the pairwise method appear less disperse across simulations. Overall, the performance

of the Borda method improves as the average proportion of the sample observed by each

observer increases, as seen in Figure A1 (d). From this, we conclude that the pairwise method

offers a significant improvement over the commonly used Borda method when observers rank

a limited subset of alternatives, a common scenario in many settings.

2.3 The pairwise method

2.3.1 Challenges

We have shown that it is a priori appealing to resort to pairwise majority voting as a method

for eliciting preferences over alternatives: it remains accurate in many situations in which

Borda counts are not; and it imposes less of a burden on respondents than eliciting uk(yi)

directly. The method, however, raises a number of specific difficulties that we now address.

The first challenge is how to elicit pairwise votes on a set of alternatives. Since the

number of pairs in a rankable set mk is (mk − 1)mk/2, it increases rapidly with mk. The

solution, however, is simple: ask respondents to rank all mk alternatives and extract pairwise

‘votes’ from that report. For instance, if an observer reports U(y1) < u(y2) < u(y4), we can

recover 3 ∗ 2/2 = 3 pairwise votes on {y1, y2},{y1, y4}, and {y2, y4} that can be used to

estimate (1) using all available information on those pairs from a multiplicity of observers

with different rankable sets.

The second challenge is how to aggregate these votes across all pairs to produce an esti-

mated ordering. The solution we propose is to resort to a specific set of matrix manipulations.

For the reader familiar with network matrices, reported ranks are first organized in the form

of a directed adjacency matrix. By analogy with the concept of distance in directed matrices,

all the alternatives that are above a specific alternative i can be identified by taking forward

powers of the adjacency matrix, while all the alternatives below i can be identified by taking

backward powers of the same matrix.

The third challenge is to summarize partial information. When the sample of observers

is small, our proposed method is not guaranteed to produce a full or even transitive ordering

of all the alternatives. To this effect we propose a [0, 1] summary index similar in spirit to

the normalization of Borda counts: no information means an index value of 0.5, while values

below 0.5 implies that the alternative is ranked lower than other alternatives, and vice versa

if the index value is above 0.5. With this approach, all alternatives in a Condorcet cycle end

up with the same index value, i.e., they are tied.

The fourth challenge is to estimate the accuracy of the method in a particular sample. To

14



address this challenge, we rely on a randomization inference approach to mimic the random

assignment of rankable sets to observers. Counter-factual samples are generated by sampling

observers with replacement from the surveyed sample, and confidence intervals are obtained

by reporting the distribution of ranks across simulated samples.

2.3.2 From partial to complete ordering

Our objective is to use partial orderings reported by individual observers to estimate the

ordering that would be obtained by averaging normalized ranks (or scores) collected from

the entire population. We assume that partial rankable sets are randomized across observers,

but we allow alternatives to be correlated within each rankable set.

We start by illustrating how orderings can be represented in matrix form. Consider a set

S of m alternatives ranked in the order of their values u(yi):

u(y1) < u(y2) < ... < u(ym)

with the resulting ordering taking rank values ri ∈ {1, 2, ...,m}. We take this ordering to

represent the aggregation of individual true orderings that we would obtain through a Borda

count if we had information on all individual orderings. Consequently, we assume this ‘true’

ordering to be transitive, possibly with ties.

The true ordering has an m×m matrix representation R in which each matrix element

ηij = 1 if u(yi) < u(yj) and ηij = 0 if u(yi) > u(yj). For instance, ordering u(y1) < u(y2) <

u(y3) < u(y4) is represented as:

R ≡ [ηij] =


. 1 1 1

0 . 1 1

0 0 . 1

0 0 0 .

 (4)

Diagonal elements ηii are missing since alternative i is not ranked relative to itself. Ties are

represented as ηij = ηji = 0.

The sum
∑

j ηij of the elements in row i is the number of alternatives ranked higher than

i, and the sum
∑

j ηji of the elements in column i is the number of alternatives ranked lower

than i. It follows that the rank ri of alternative i is:

ri = m−
∑
j

ηij = 1 +
∑
j

ηji (5)

where sums are taken over non-missing values. Normalized ranks zi can also be computed
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as:

zi ≡
ri

m+ 1
=

1

2

P +m+ 1

m+ 1
(6)

where:

P ≡
∑
j

ηji −
∑
j

ηij

is the difference between the number of alternatives above i minus the number of alternatives

below i. We will use this property below.

We observe a series of partial orderings reported by independent observers. We assume

these partial orderings to be unbiased but they possibly contain observational or reporting

error. Partial orderings can also be represented in matrix form. For instance, if observer a

does not rank y3, the reported ordering can be written as:

Ra =


. 1 . 1

0 . . 1

. . . .

0 0 . .

 (7)

where the row and columns for alternative 3 are both missing. The matrix representation

can also accommodate disconnected orderings – e.g., respondent b reporting y1 < y2 and

y3 < y4 only—as well as other partial orderings.

The next step is to use a ‘majority voting’ approach to obtain relative rank estimates for as

many pairs as possible and to fill a matrix with them. Formally, let vector rk = {rk1 , rk2 , ...rkm}
be the ordering reported by observer k for alternatives from 1 to m, with some alternatives

possibly not ranked by k, i.e., mk ≤ m. From this ordering, we constructmk(mk−1) pairwise

comparisons ηkij for each observer k as explained earlier. We then apply the ‘majority voting’

rule (1) to aggregate across observers each pairwise comparison into an estimate of an element

of matrix R:

η̂ij = 1 if
n∑

k=1

(2ηkij − 1) > 0 and 0 otherwise (8)

with R̂ = [η̂ij]. There is a tie whenever
∑n

k=1 η
k
ij = n/2, in which case, by (8), both η̂ij = 0

and η̂ji = 0. Majority voting on pairs can produce many ties, especially when the number

of observations on a pair is small (and even).

To reduce the proportion of ties, we also implement an alternative voting rule that takes

rank differences into account. Formally, let rki be the integer rank of alternative yi reported by

observer k, and similarly for rkj . Denote the rank difference as dkij = rkj − rki . This difference

can be positive or negative, depending on whether rkj > or <rki . We then estimate the
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elements of matrix R using:

η̈ij = 1 if
n∑

k=1

dkij > 0 and 0 otherwise (9)

with R̈ = [η̈ij]. In a pairwise comparison, formula (9) gives more weight to an alternative

i that, on average, is several ranks higher than j by observers. The rationale behind this

approach is that, on average, large rank differences are correlated with large differences in

values uk(yi) or beliefs Ek[yi]. This method brings the estimated preference ordering closer to

a social welfare ordering and, by Tangian (2000)’s Theorems 1 and 3, it also brings it closer

to an ordering obtained by averaging complete normalized rankings, which is our objective.

Matrices R̂ and R̈ summarize the available information about all the pairwise comparisons

implicit in the data—but they contain no information on pairs that are not compared by

any observer. We may nonetheless be able to fill some of these missing pairs by combining

the available information. To illustrate, imagine that one observer reports partial ordering

y1 < y2 < y3 and a second observer reports y3 < y4. Given our assumptions of transitivity

in true rankings and unbiased reporting, a best guess about the true ordering is y1 < y2 <

y3 < y4 < y5, where we have ‘stitched’ together the two partial rankings using the common

alternative y3. This methodology can be summarized as follows. Any ordering can be

represented as a ranking matrix (e.g., matrix Ra in equation 7) and each ranking matrix

can be seen as the adjacency matrix of a directed network in which an arrow from yi to yj

implies that yi < yj. It follows that alternatives above yi can be identified by following all

network paths leading from yj. All these paths can, in turn, be identified by taking powers

of the adjacency matrix of the directed network which, in our case, is (a transformation of)

R̂ or R̈. A similar process can be used to identify all the alternatives below yi. The result

of both these calculations is summarized in a new rank matrix R̃. This matrix identifies all

the directed chains of alternatives that can be recovered from the data.

Matrix R̃ is then used to compute an estimate z̃i of the normalized ranks using formula

(6). If matrix R̃ contains a complete transitive ordering of all the alternatives and reported

ranks are sufficiently accurate, the z̃i estimates coincide with the normalized ranks zi in

the true matrix R. Matrix R̃ is not complete, however, if an alternative m is not ranked

by any observer. In this case, formula (6) yields a value of z̃m = 0.5 for that alternative,

which correctly denotes an absence of information. The formula also generalizes the concept

of normalized ranks to situations in which the directed network represented by matrix R̃

contain forks, splits, or cycles: forks and splits result in an incomplete ordering by z̃i, and

cycles result in ties. Examples are provided in Appendix C. For these reasons, z̃i is the main

object of interest in our analysis.

17



To assess the accuracy of the z̃i estimates, we construct confidence intervals using a

cluster bootstrap. The approach is based on the two maintained assumptions behind our

methodology, namely that: (1) rankable sets are assigned to observers independently from

their preference ordering over all alternatives; and (2) observers have orderings over the

full set of alternatives that are independently distributed from their rankable sets. Under

these two assumptions, each reported partial ordering rk can be seen as an i.i.d. realization

of a data generating process that randomly samples from the true orderings. This data

generating process can therefore be mimicked by drawing with replacement from the set of

reported orderings, so as to produce counterfactual samples of orderings. By calculating z̃i

estimates for each counterfactual sample, we can approximate the distribution of z̃i estimates

produced by the data generating process. This produces confidence intervals for estimated

z̃i.

2.4 Monte-Carlo simulations

From Tangian (2000)’s theoretical results, we know that we can reliably estimate a population-

wide ordering by averaging ‘votes’ over pairwise alternatives obtained from a large enough

sample of observers – provided that the rankable sets of each observer is distributed inde-

pendently from their ordering over all the available alternatives. What is less clear is how

large this sample has to be. Tangian (2000) reports minimal sample size formulas for various

parameter values, but in a context in which (1) the number of alternatives is small and each

observer ranks all alternatives and (2) observers have different orderings over these alter-

natives and the object of the estimation is to aggregate observers’ orderings to predict the

ordering of the entire population. The example discussed in Tangian’s is one of a poll of

voters used to predict the outcome of an election.

In our setting, observers are asked to rank local households by income level, which implies

that all observers ought to have the same true ordering. This difference from Tangian’s

setting should work in our favor in the sense that we are not attempting to recover the

average ordering of a potentially diverse voter population. In our setting, all observers are

asked to report on the same objective ordering – and they deviate from this ordering only

because of observation and reporting error. Consequently, the number of observations on

a pairwise comparison that is needed to converge to their true rank should be smaller if

observation and reporting error is small. However, our setting also differs from Tangian’s

in another important way: observers only rank a subset of the available alternatives, not

all of them. Because of these two differences, it is unclear how many observers would be

required to obtain accurate estimates of the true ordering since this number depends on (1)
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the proportion of alternatives each observers ranks and (2) the magnitude of the observation

and reporting error.

To address this issue, a Monte Carlo simulation analysis is conducted to examine how

precisely true normalized ranks zi are approximated by orderings estimated using the scor-

ing, Borda count, and pairwise method, respectively. We do this under different scenarios

regarding the information available to observers, namely: the average number S of target

households they can rank; and the variance V of the error they make about other households’

incomes. To this effect, we start by generating artificial samples of log(yi) realizations by

drawing from a standard normal variable with mean 0 and unit variance—which means that

the distribution of income yi is log-normal. We organize these random draws into 100 sets

of 30 income realizations, intended to represent households in a village or urban neighbor-

hood. The true normalized ordering of households by income in each set is denoted by vector

z = z1, ..., z30.

Each set of households is associated with 9 observers who know a fraction S of them.

Each Observer k has an estimate yki of the true income yi of household i in their location.

This estimate is given by:

log(yki ) = log(yi) + uk
i (10)

where observation error uk
i is an i.i.d. random draw from a mean-zero normal variable with

standard deviation V .17

From the income realizations and observation errors, we construct two reports that each

observer makes to the researcher: a vector of income estimates yki for each of the households in

their rankable set sk; and a normalized vector of estimated rankings zk = {zk1 , zk2 , ...zkmk
} for

the households in their rankable set, where ranks are based on their observed income yki and

zki are computed using formula (3). From these reports we then construct three estimates:

(1) a scoring estimate obtained by first averaging the reported income of household i across

observers, i.e., yai =
∑

k y
k
i , and then calculating i’s normalized income rank ωs

i from 0 to

1 based on that; (2) a Borda count rank obtained by first averaging the normalized rank

of household i across observers, i.e., zai =
∑

k z
k
i , and then calculating i’s 0-to-1 normalized

rank ωb
i based on that;18 and a pairwise method index zi calculated according to equation

17The important assumption here is that observers k and observer m see the income of individual j with
mean-zero errors that are independent (and identically distributed) between k and m. This assumption
implies that averaging across observers reduces expected measurement error. Although equation (9) also
implies that the errors that observer k makes for individual j and individual i are i.i.d. as well, observer
fixed effects could be accommodated when they only report relative rankings, as in the Borda and pairwise
methods.

18By construction, the average of normalized ranks compresses the distribution of ranks towards the
middle. In order to compare the Borda count method to the scoring ranks, it has to be resclaled to span the
same range before renormalizing the result.
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(6), from which we construct a rescaled normalized ordering ωp
i from 0 to 1.19 We then

calculate the Mean Square Error (MSE) of each estimator m ∈ {s=scoring, b=Borda count,

p=pairwise} as:

MSEm =
1

3000

3000∑
i=1

[ωm
i − zi]

2 (11)

The lower bound of MSEm is 0 when the estimated ordering perfectly matches the true

ordering. In our simulation, the measure takes value 0.0832 when all households are tied

at the mean rank (i.e., 15.5) and it is equal to 0.333 when the estimated ordering is the

reverse of the true ordering. This means that any MSE above 0.0832 is worse than having

no information. In all simulations we expect the MSE obtained by the scoring method

to perform the best because it relies on richer information provided by observers. But it

can diverge from the true ordering due to observation error. Hence the MSE value for the

scoring method should be seen as the lowest achievable MSE of the pairwise and Borda count

methods relying on the same observers.

We report in Tables 1 and 2 the results from two sets of Monte Carlo simulations. All

simulations reported use the same vector of income realizations, so as to eliminate any

random sampling noise. Each table reports the three MSEm for 20 different simulations

based on the amount of observation error V—from 0 to 0.9 (to recall, the standard deviation

of log(income) is 1)—and the size of the rankable sets S—from 10% to 70% of the set

of 30 households in the observer’s location set. Each table has two panels. In the right-

hand panel, we only report the MSE estimates for ranked alternatives—as well as the total

number of ranked alternatives. Given that methods and simulations vary in the fraction of

ranked alternatives, we also report in the left-hand panel MSE estimates calculated over the

whole sample of 3000 households, so as to facilitate comparison. In this panel, unranked

alternatives (ie., households) are assigned the median normalized rank of 0.5—meaning ‘no

information’.

In Table 1, rankable sets are uncorrelated by construction, which means that each ob-

server has an independent S% probability of observing each of the 30 households in their

set. We know that, in this case, the Borda count method is expected to do reasonably well,

but we are not sure how the pairwise method will perform relative to it. Results show that,

for all three methods, estimated orderings deteriorate with observation error: for V = 0.9

and S = 0.1, orderings estimated by the pairwise and Borda count methods are both worse

than no information, i.e., their MSE exceeds 0.0832. We also note that all methods improve

19To ensure full comparability between the three methods, each of the three 1-to-30 orderings is obtained
using the same Stata command ’egen ordering=rank(estimate), by(zd)’ where ’zd’ is the identifier of the set
of 30 households. Each of these rescaled 1-to-30 orderings is then normalized using formula (3).
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with observer coverage, as could be expected. For instance, with a coverage of 70% and low

observation error (V <= 0.1), all methods do quite well. We also see that all three methods

fail to rank a sizeable proportion of alternatives when coverage is low—e.g., S = 0.1 or 0.2.

Finally, and more importantly, we note that, in half of the simulations with less observation

error, the pairwise method does better than the Borda count method. This is particularly

noticeable in the right-hand panel where we ignore unranked alternatives (which add noise

to the MSE’s).

Earlier in this Section, we have argued that the pairwise method is expected to do

particularly well when rankable sets are correlated. To confirm this prediction, we repeat in

Table 2 the same set of 20 simulations with maximally correlated rankable sets, in the sense

that the set of households observed by each observer k is contiguous in income. In practice,

this is achieved by randomly picking an integer U between 1 and 30(1 − S) and letting

observer k see households U to int(U + 30S) in the true income ordering. To illustrate, if

S = 0.1 and U = 5 then the set of observed households is those with true ranks r5, r6, r7, r8.

As predicted, we find that the pairwise method does much better than the Borda count

method, outperforming it in 18 of the 20 simulations. In some cases, the difference is

qualitatively quite large. For instance, when S = 0.2 and V = 0, the pairwise method

yields an MSE of 0.061 (0.043 if only ranked alternatives) while the MSE of the Borda count

method well exceeds 0.0832, meaning that it does worse than having no information. The

superiority of the pairwise method is maintained even with a high level of observation error,

although both methods perform poorly when coverage is very low (S = 0.1). In that case,

only the scoring method manages to recover a meaningful ordering estimate of 0.074, which

is less than 0.0832—and 0.063 when ignoring unranked alternatives.

From this exercise we conclude that the pairwise method has a useful role to play in the

estimation of orderings when observers rank different subsets of the available alternatives.

Furthermore, the pairwise method tends to outperform the commonly used Borda count

method when the rankable subsets of observers are correlated—as is likely to be the case in

many empirical applications.

3 First application: Rural Indonesia

We start by validating our method using data on rural Indonesia from Alatas et al. (2012).

In this study, the authors collect poverty rankings, from richest to poorest, of, on average,

8.7 randomly selected rural households in each of 640 villages.20 Each household is ranked

20In most villages (94%) the authors rank 9 households. In 32 villages they rank 8, 4 villages they rank
7, and 1 village they rank 6 households.
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separately by 7.5 observers on average.21 These observers are the other sample households

living in the same village. Since observers are not free to choose which neighbors to rank,

there is no self-selection of rankable sets and thus no possibility of correlated rankable sets

across observers.

Apart from the fact that observers do not include themselves in their reported ranking,

there is near universal overlap in the set of households on which each observer reports an

income ordering in a given village. This feature allows Alatas et al. (2012) to construct a

unique ranking index r̃i for each sample household by averaging reported rankings within

villages. Since the number of reported ranks on each household is large—i.e., 7.5 on average—

this serves to reduce observation error. In addition, there is considerable agreement in

reported rankings across observers. To show this, we compute the standard deviation of the

ranks reported by different observers around the average rank of a given household. We find

it to be small (1.24) relative to the standard deviation of ranks across the entire sample, which

is 2.25. Alatas et al. (2012) also compare average rankings to consumption expenditure data

collected on 5,352 of the ranked households. They find that average rankings are only poorly

correlated with reported consumption.

We apply our pairwise method to the same data in order to obtain estimates of z̃i for

each sampled household in each village. From this value, we construct an estimated rank

r̂i by sorting observed households according to z̃i in each village—and taking proper care

of ties. We then compare these estimates to estimated ranks similarly obtained by sorting

households by their averaged normalized ranks reconstructed from the Alatas et al. (2012)

original r̃i ranks.
22 To eliminate variation in sample size across Enumeration Areas (EAs),

both measures are normalized (i.e., divided) by the total number of ranked households in the

village plus 1. We find a correlation of 0.96 between the two measures. This indicates that our

method is capable of recovering ranking information that is very similar to that obtained by

averaging ranks across observers, even though we only use the pairwise comparisons implied

by the observers’ reported rankings. The high correlation in aggregate orderings obtained

using the Borda count method and our pairwise method matches the theoretical predictions

of (Tangian, 2000) when rankable sets overlap across observers, as is the case here.

We then compare (similarly normalized) household rankings based on reported consump-

tion expenditures to those obtained from r̃i and z̃i. We find that rankings constructed from

r̃i predict consumption ranks with a R2 of 0.1456. For the rankings obtained by our ma-

21Of 5711 households ranked in the study, 74.9% are ranked by 8 observers, 12.9% by 7, 4.8% by 6, 3%
by 5, and the rest by 4 or fewer observers—except for 17 households that are ranked by 9 observers.

22These estimates differ from the original Alatas et al. (2012) measures because we normalize the ranks
reported by individual observers before averaging them. This corrects for variation across EAs and observers
in the number of households they rank.
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trix method, the corresponding R2 has a value of 0.1426. This shows that, in this case,

the two methods, on their own, perform equally well in terms of predicting consumption.

We also regress consumption ranks on both estimated ranks and find that the R2 only rises

marginally—to 0.1472. This demonstrates that, in these data, both measures contain equally

valuable information on consumption rankings. From this we conclude that, with high-

quality data such as that gathered by Alatas et al. (2012), our proposed method produces

results that are nearly as good as rank averaging, even though they are not identical. This is

remarkable since, as show in Table 1, the absence of correlated rankable sets gave the Borda

count method an advantage when, as here, S is large.

4 Second application: Urban Côte d’Ivoire

We now apply our proposed method to original data that we collected in and around the

large city of Abidjan in Côte d’Ivoire. As we shall see, this urban setting created different

conditions from those encountered by Alatas et al. (2012) in rural Indonesia: unlike in their

setting where all sampled households know each other, our observers are less knowledgeable

about their neighbors. As a result, there is less overlap in the set of households that are

ranked by individual observers in a particular location. It immediately follows that averaging

rankings to construct a r̃i index is unlikely to be reliable in the context of our data. But, as

we have shown in Section 2, the pairwise approach still applies.

4.1 Sampling frame

We conducted a peer ranking exercise as part of a data collection effort conducted under the

African Urban Development Research Initiative (AUDRI) at Stanford University. The main

objective of AUDRI is to generate representative data of urban and peri-urban populations

in the Greater Abidjan, the capital city of Côte d’Ivoire.

For the full AUDRI study, the National Statistical Institute (INS)’s enumerations areas

(EAs) were used as sampling frame. In 2014, EAs were defined as follows: (i) in urban

areas, an EA includes exactly 200 households, (ii) in rural areas, an EA includes all the

households living in a village, which can be more or less than 200. The EA geographic

delimitation as described in the 2014 database was used to infer the total rural and urban

population. About 83% of the AUDRI sampling frame live in urban areas in 2014. The

AUDRI sample over-samples areas in the process of urbanizing, with 84 “semi-rural” EAs

(peri-urban villages) and 622 urban EAs across 16 sub-districts around the capital city of

Abidjan. These correspond to the blue areas in Figure A2.
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The ranking exercise used for this paper focuses on a subset of the AUDRI EAs, namely

20 urban EAs and 14 rural EAs among those in the AUDRI sample.23 The urban EAs were

randomly selected among EAs (a) in the two most populated municipalities in Abidjan and

(b) defined as “slums” according to the 2014 census.24 These study areas are named ranking

areas hereafter.

4.2 Household Sampling and Data

Listing and Individual Surveys The AUDRI project undertook two distinct surveys: a

household listing survey and a more detailed individual survey for a selected subset from the

listing. The household listing survey was conducted in July-August 2019 in all 706 EAs.25

In the ranking areas, for the sake of this study, enumerators were instructed to list the names

of up to 14 consecutive households.26 Having been identified, these households were then

asked to answer a short listing questionnaire. Not all of them agreed to do so: in total, 207

households across 34 EAs (i.e., about 6 per EA) answered the listing survey, which collected

information about each member of the household and basic dwelling characteristics and asset

ownership.

From the listing survey, 70% of households were sampled for the individual survey that

was conducted between December 2019 and early March 2020. This survey covers a wide

range of topics about the individuals’ labor activities, transport habits, health conditions,

and public service access (4-hour long questionnaire).27 In ranking areas, 119 individuals

participated in this survey, with a completion rate of 84%.28 The 34 ranking areas therefore

23We initially selected 20 “semi-rural” EAs and 20 urban EAs among those in the AUDRI sample, but six
villages could not be reached by the team of surveyors because the village chief did not allow our enumerators
access to the village.

24The slum definition we use is that of UN-Habitat 2006, i.e., areas lacking access to improved water,
improved sanitation, sufficient living area, durable housing, and secure tenure.

25Enumerators started counting households from the centroid (barycentre) of the EA and moved in circles
of increasing radii around the centroid, knocking on doors. Only one member of the household (above 18
years old) was surveyed and asked about other members.

26Instead of adopting a jumping right-hand rule as in the AUDRI project, enumerators were asked to
survey all the 14 first consecutive households to their right, thus surveying households living close to each
other and considered as neighbors. In practice, we listed fewer of these in the target number in 8 EAs, due
to a combination of logistical difficulties and low population density in rural EAs.

27Dwellings with no one at home at the time of the first knock were included in the count and, if sampled
for listing, revisited later in the day or in the next few days to attempt to conduct the listing survey. Thus,
listed households considered “absent” are households for whom no member could be surveyed during the
listing. Note that in four EAs, due to miscommunication in the field, dwelling closed on the first visit were
neither counted nor listed. Thus, surveyed households live quite far apart (a few blocks away) from each
other in these four areas. We control for this case in the analysis when possible.

28Reasons for non-completion include re-locations and long-term travel, non-availability, appointment
refusal, and insufficient (working) information to join or reach out to the respondent (non-working cellphone
numbers, GPS position, and home directives). A detailed description of the collected survey data is given
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contain 207 households who responded to the questions necessary to construct their PMT

index: 119 from the individual survey, and 88 from the listing survey only. These are the

households we wish to rank to compare this survey-based measure of material welfare with

the rankings reported by neighbors.

Ranking Survey The ranking survey was administered in the ranking areas in early

March 2020. Each respondent was asked to rank at least 5 and up to 14 households in

their neighborhood in terms of their material well-being.29 Half of the sample was also

asked to include themselves in the ranking. As in other surveys of relative rankings, we

did not tell respondents whether their rankings would be used to target benefits to certain

households. In practice, they were not. Respondents were free to include any immediate

neighbor they knew by name and enumerators were instructed to identify—and confirm with

the respondent—the names of the target households so that they could be matched with the

data we collected on them.30

A total of 507 respondents answered the ranking survey (see Table A1):

1. Individual survey households (N=119): These respondents are taken from the 70%

listed households selected for the Individual Survey. We re-visited them for the ranking

exercise a few weeks after the Individual Survey to collect rankings.

2. Listed households (N=88): These respondents are taken from the listing survey among

those who were not selected for the Individual Survey. In order to administer the

ranking survey with these households, we contacted the head and scheduled an ap-

pointment, then surveyed a household member available at home at the time of the

enumerators’ visit.31 Individuals from the individual survey and the listing survey are

identified by the letter A in the graphical analysis.

3. Additional respondents selected on the spot (N=230): These are members of households

in Dupas et al. 2021.
29The precise wording of the question was: ”Maintenant que vous avez identifié les ménages que vous

reconnaissez [dans notre liste], pourriez-vous me donner un classement de ces ménages, du plus pauvre au
plus riche selon vous.” (Now that you have identified the households that you recognize [in the list], please
rank these households from the poorest to the richest in your opinion).

30The SurveyCTO questionnaire helped enumerators scroll through the precoded names of the target
households, i.e., those in the listing data. Based on timestamps data, the ranking module took 13 minutes to
administer (median). We did attempt to include the names of households other than the target households,
in the hope of improving the quality of reconstructed rankings. But there were very few of them and we
cannot be sure these names identify the same households.To avoid identification errors, we drop from the
ranking analysis those households that could not be matched by the enumerator with a target household.

31For logistical reasons, we did not randomly select the gender of the respondent for this group. The
survey includes a subset of the modules in the Individual Survey, notably consumption information, and the
rankings.
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who were identified at the beginning of the listing exercise (i.e., we have their names),

but were absent during the listing survey and hence could not be interviewed. We

revisited them and, when we found someone available, we administered the ranking

questionnaire. These respondents were also asked the questions from the consumption

module of the individual surveys, as well as questions needed to construct their PPI

index. These households are identified by the letter B in the graphical analysis.

4. Key Informants (N=70): We visited key informants in each ranking area. Since

“chiefs” are rare or nonexistent in Abidjan’s urban areas, we instead survey traders

operating in the vicinity of the surveyed dwellings, based on the assumption that they

could observe the consumption pattern of their customers and thus have some knowl-

edge about the material well-being. Those individuals are identified by the letter C in

the graphical analysis.

Some evidence suggests that perceptions of relative poverty may diverge from objective

rankings (Cruces et al., 2013). To investigate this possibility in our setting, we asked respon-

dents about: (i) the perceived poverty level of their household; (ii) how they regard their

households compared to others in the neighborhood; and (iii) how they think others perceive

the respondent’s household. The results, summarized in Table A5, provide some support for

this possibility: while 29% of respondents see themselves as poor, only 21% believe they

are poorer than their neighbors and only a fifth of them think others view them as poor.

Furthermore, among those who self-identify as poor, 53% do not believe others see them

that way.

As noted in the introduction, income orderings reported by individuals may reflect dif-

ferent views about what constitutes poverty (e.g., Alatas et al., 2019; Galasso and Ravallion,

2005; Ravallion, 2008). To delve deeper into perceptions of poverty, we asked observers

to describe “in their own words” the criteria used to classify households as poor, the vast

majority of respondents refer to poverty as “food deprivation” (80%) and some mention

“unresolved health problems” (43%). In terms of ranking, 49% take into consideration the

occupation of the household head job and another 49% base it on the household’s known

financial struggles. Over half of the participants report frequently visiting the neighbors they

listed and around half reporting having sought financial or health advice from them.

4.3 Poverty measures

Since the purpose of the ranking exercise is to compare rankings reported by neighbors to

survey-based measures of material welfare, we collected extensive information on income and

wealth, allowing us to compute various poverty measures. There is indeed disagreement in
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the literature regarding which proxy for material welfare is least subject to measurement

error. Some authors believe that recall data on consumption is a good proxy for short-

term material welfare while PMT and PPI are of a proxy for long-term welfare. Trachtman

et al. (2022), for instance, shows that orderings reported by neighbors in rural Indonesia

correlated more with wealth differences than PMT or PPI. To account for this possibility,

we examine several poverty measures and proxies in our analysis. For all measures, a lower

value indicates greater poverty.

Consumption / expenditures Three main household consumption measures were col-

lected on most of the target households32 and some of the additional respondents:(1) Value of

food consumption in the last week before the survey: we used a typical consumption module

to collect recall information on the value of household consumption of cereals, pulses, spices,

milk products, meat, bread/pasta, vegetables, fruits, drinks, alcohol, and other consum-

ables33. (2) Value of conspicuous/social consumption in the last month before the survey: we

asked specific questions about non-food expenses, such as communication, beauty products,

entertainment (concert, bar, cinema, games), and charitable contributions. (3) Spending on

durables in the last 12 months before the survey: these include expenses for clothing, shoes,

furniture, school fees.34

Proxy Means Test (PMT) The government of Côte d’Ivoire introduced its own PMT

index in 2015. The weights imputed to each household characteristic are the coefficients from

a regression run by the government of Côte d’Ivoire on survey data collected in 2015 as part of

the living standards measurement study. The regression predicts the log(food consumption

per capita) using about 25 predictors that include assets and house characteristics. We use

these same weights to build our PMT index for the target households that responded to the

individual survey. Since the PMT index weights were estimated separately for urban and

rural EAs, we treat peri-urban EAs in our sample as rural for the purpose of their PMT.

We also cross-validated the methodology used by the Government of Côte d’Ivoire with our

own data. We obtain a similar fit when predicting log(food consumption per capita) and

relatively similar coefficients in terms of magnitude ( see the left-hand panel of Table A2).

The sample distribution of our PMT estimates is shown in the top panel of Figure A3.

32The information is missing for 13 respondents who could not be reached at the time of the individual
survey or did not recall their past consumption

33Note that the consumption module was administered earlier for respondents in the individual survey
(about a month before), and we pulled all data together for consistency.

34A few respondents answered that they did not know when asked about a particular good consumed
(typically 1-3% of the sample in a given consumption question). In such a case, we replace the answer by
the average in the enumeration area to preserve the sample size.
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Poverty Probability Index (PPI) Innovations for Poverty Action (IPA) introduced the

PPI index in April 2018 using Côte d’Ivoire’s 2015 living standards measurement study. The

PPI aims to predict the probability of the household falling below the National Poverty Line

and, unlike consumption expenditure data, it is considered a measure of long-term material

welfare that is unaffected by transient shocks in consumption. The PPI is constructed from

answers to ten questions covering geographic location, household characteristics, and living

conditions—see Table A3 for the full list of questions. We use these same ten questions

to construct a PPI index for our sample of households. The sample distribution of the

index is shown in the bottom panel of Figure A3. We see that our sample households

are widely distributed according to their poverty status—and slightly wealthier than the

average household in the country. This is expected given that our sample households live in

and around the capital city of the country where the cost of living is higher.35

Table A4 shows summary statistics from the various measures, separately for urban and

peri-urban (rural) EAs. Figure A4 shows how the measures of poverty are correlated with

each other. We see that the PPI index is positively correlated with the PMT index, food

consumption, conspicuous consumption, and expenditure on durables.36

5 Poverty rankings

5.1 Sample statistics

By design, in each of the 34 EAs we aim to rank up to 14 households for whom we have the

name of the household head or his/her spouse—a total of 476 households. This represents 91

household pairs per EA, or 3094 pairs in total. We also surveyed 1-3 key informants per area

as described previously, and thus we obtained 14.9 observers in each EA on average—507

respondents in total.

Each observer is allowed to rank up to 14 households.37 If all 507 observers rank 14

households in their EAs, this would yield 46,137 pairwise rankings in total, with up to 15

distinct reports on each pairwise comparison. This undoubtedly would allow us to construct

complete rankings of the 14 target households, either by averaging ranks, as was done by

Alatas et al. (2012), or by our pairwise approach. We do not, however, expect all observers

35In Table A2, Column (6) and (7), we report the fit from the PPI regression which regresses log(food
consumption per capita) on the variables used to build the PPI index. We obtain a reasonably large R2.

36We use all three poverty assessments since there is disagreement in the literature regarding which proxy
for material welfare is least subject to measurement error. For instance, Trachtman et al. (2022) shows that
orderings reported by neighbors in rural Indonesia correlated more with wealth/consumption differences than
PMT or PPI.

3715 for the half of the respondents who were asked to rank themselves; 14 for the others.
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to rank 14 households because, unlike in rural areas, urban residents rarely know all their

neighbors: 17% of the respondents in our urban sample arrived in their neighborhood within

the last year, and only 6% were born in the area. To compensate for this, the number of

observers is double the average number of 7.5 observers per target household in the Alatas

et al. (2012) study. This is also why, in the 34 EAs covered by this study, the 14 target

households were selected among close neighbors, in the expectation that this would facilitate

rankings. In practice, respondents often refrained to rank even their immediate neighbors,

arguing that they did not know enough about them.

Overall, we only collected 1820 distinct pairwise rankings—3.9% of the maximum achiev-

able figure of 46,137.38 This is well below what we were anticipating—and below Alatas et al.

(2012) for whom this proportion is 100%. These 1820 pairwise rankings involve 837 distinct

household pairs, which represent only 27% of the 3094 possible pairs of targeted households

in our sample. These 837 distinct pairs involve 364 target households in total, which means

that 24% of targeted households were not identified or ranked by any of our observers. For

442 of these pairs (52.8%), we have a single ranking—which rules out relying on averaging

to minimize observation error. The average number of pair rankings per observer is 3.6 pairs

and the maximum number of ranked pairs is 36.39 This is much lower than in the Alatas

et al. (2012) data, where the corresponding average number of rankings per pair is around

6 and 96% of households are ranked by five observers or more. As noted in Section 2, with

such low level of overlap across observer rankings, averaging ranks across observers would

be very imprecise. We also find that, when a pair of target households is ranked by multiple

observers, there is considerable disagreement among them: only 24% of multi-ranked pairs

have full agreement among observers (Table A6).

All this confirms the original motivation for our effort, namely, that urban households

are less able than rural households to rank their neighbors by poverty level. What remains

to be seen is whether our pairwise method can recover useful ranking information from such

sparse and noisy data.

5.2 Reconstructing ranks using the pairwise method

We now combine the pairwise rankings that we collected to construct poverty ranking es-

timates using the methodology described in Section 2. The results reported here rely on

formula (??. Similar, albeit slightly less precise estimates are obtained using formula (??).

38A pairwise ranking is a report by one observer, say k, who ranks household i relative to household j.
Another observer, say m, may also rank household i relative to household j, in which case we have multiple
rankings on the same ij household pair.

39If we omit self-ranks, the average number of pair rankings by observer is 2.5 and the maximum number
of ranked pairs is 28 across the sample.
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Ranking graphs for the 34 locations in which relative rankings information was elicited are

presented in Appendix C (see Figures C1 and C2 in urban slums and rural villages, respec-

tively). Each node represents a household, identified to respondents by the name of the head

of household, spouse, age, and residence location. We also measured the PPI Index for each

household whenever possible, divided it into four equal categories across the entire sample

and added it directly on the directed graphs. Households with ids in the A’s are households

sampled for the Individual Survey.40 Households with an id number in the B’s are neighbors

added as respondents for the ranking exercise. In contrast, households with an id number in

the C’s are “key informants” identified in the neighborhood—typically traders. We did not

seek to explicitly elicit rankings on households with B’s and C’s IDs, but, as they are neigh-

bors of A’s, they are sometimes ranked, and we manually matched based on similar names,

ages, and household sizes. We keep them in the graphs because omitting them sometimes

breaks the graph into multiple components.

We immediately note that some locations provided much more information than others.

Locations 13, 15, 22, and 28 only contain information on two or three pairs of households.

Thirteen locations are broken into two or more components that cannot be ranked relative

to each other (i.e., 1, 3, 5, 10, 11, 16, 17, 18, 23, 24, 25, 29, and 33). This pattern leaves

fourteen locations with a single component containing at least five households (i.e., 2, 4, 6,

7, 8, 9, 12, 14, 19, 20, 21, 30, 31, 32). Of these 13 locations, some (i.e., 2, 4, 6, 7, 20, 30)

contain at least one (directed) cycle involving a subset of nodes—which are thus all tied

together; while the others are transitive.

In Table A7, we report, for the 14 locations with a single component and at least five

ranked households, rupi ≡ sumjηji, the number of households who are ranked richer than

household i, and rdown
i ≡

∑
j ηij, the number of households who are ranked poorer than i We

immediately notice that, contrary to equation (??) for the complete ranking case, rupi is not

the same as m− rdown
i − 1. For instance, in location EA 2, there are 16 ranked households.

Household 203 has no household ranked richer but thirteen households ranked poorer, while

household 301 has no household ranked richer, but ten households ranked poorer. If we look

at the directed graph of relative rankings for location 2 (Figure C1), we note that household

203 is at the top of a long sequence of ranked households. In contrast, household 301 sits

on a side branch above household 209, but is unranked relative to households 203 to 208.

This characteristic means that household 301 could be as rich or even richer than 203, but

in all likelihood, it is poorer. We cannot, however, clearly rank 301 relative to households

208, 205, 201, 202, and 203. We also do not know how 902 ranks relative to household 208:

40These households are included in the graphs even if they could not be found when the listing survey
was done.
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it could be poorer or richer. This example illustrates the partial nature of the information

we can recover from the reported rankings.

We also observe situations in which multiple households share the same number of poorer

and richer households. This arises when the constructed rankings are non-transitive, i.e.,

when they include cycles/ties. Households located at either end of the ranking chain stand

on their own, but for instance, households 203, 206, 210, all have the same (large) number of

households ranked above and below them in EA 6. This is because there is a directed cycle

between them, meaning that, based on our definitions, they are both richer and poorer than

each other—i.e., they are tied. This is clear in the directed graph of relative rankings for

location 6 (Figure C1). One extreme case of this is location EA 30, in which all households

but two are located on a set of large cycles, meaning that they are all tied: pairwise rankings

exist, but they do not induce a transitive aggregate ranking.

As indicated in Section 2, we use a cluster bootstrap to estimate the precision of our rank

estimates. We find that index z̃i for each household i varies a lot across simulated samples of

observers. This is illustrated in Panel (a) of Figure 1 which shows, for each estimated index

value z̃i, the distribution of z̃i estimates obtained from 100 bootstrapped samples of observers,

together with the corresponding 90% confidence interval. It is immediately clear that the

standard error of each estimated z̃i is large, reflecting the lack of agreement in rankings

among observers. The bimodality in the Figure arises from sampling-with-replacement:

some households that are ranked using the full sample end up not being ranked when using

only a subset of observers.

While these findings do not constitute an indictment of the methodology, they reduce the

usefulness of its results when, as in locations 2, 4, 6, 7, 20, 30 with one or more set of ties, the

rankings data is contradictory. Constructed pairwise rankings nonetheless remain potentially

informative: as explained in Section 2, cycles in the directed graph can be caused by a

single misreported link by a single respondent. All the other directed links (i.e., inequality

relationships) in a cycle may still be correct. Given this, in the subsequent statistically

analysis we consider both the aggregate constructed rankings and relative position Pi, as

well as the constructed and reported pairwise rankings r̂ij and rij, respectively.

5.3 Comparison with other estimators

Next we compare the performance of the pairwise and Borda count methods regarding the

precision in our Côte d’Ivoire sample. To facilitate comparison between the two, we turn both

indices into normalized ranks. Turning them into ranks eliminates any cardinal difference

that may arise between z̃i and the average of Borda counts. It also allows for ties in a
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comparable manner. Normalization by equation (3), with mk the number mk of ranked

households in each EA, makes rankings comparable across EAs that have different numbers

of ranked households.

We start by noting that both estimates have the same number of unranked households.

The coefficient of correlation between the two normalized ranks is 0.867, which is lower

than in the Indonesian data. This is unsurprising given that the Borda count method is

penalized by the combination of partial ranking with possible correlation in rankable sets.

Bootstrapped confidence intervals for the two sets of ranks are shown in Panels (b) and (c)

of Figure 1 using 100 bootstrap replications of each of the 34 separate EAs. We see that

estimated ranks are imprecise, with the possible exception of households that are ranked

either very low or very high, for whom the confidence intervals are tighter. These households,

however, only account for a small fraction of the ranked households. From this, we conclude

that there is too much disagreement among observers’ reported rankings to allow us to

reconstruct accurate rank estimates with either of the two methods.

We also compare the performance of our pairwise estimator with an estimator that is

commonly used to construct relative rankings based on pairwise comparisons, as arises in

sports tournaments. Like our method, this approach relies on pairwise comparisons. But

it makes a number of functional assumptions that could potentially increase precision. To

investigate this possibility, we applied to the Côte d’Ivoire data the Newman version of

the well-known Bradley and Terry (1952) estimator, both with ties and without ties (see

Appendix B for details). Since the results are quite similar for the two methods, we focus

here on the simpler version without ties. As for Borda counts, we normalize the Newman

rank estimates using formula (3) to ensure comparability.

We first note Newman rank estimates are correlated with the ranks based on z̃i: the

correlation coefficient is 0.731. However, the Newman method only ranks 207 (57%) of

the 364 ranked households with the pairwise and Borda count methods. Is this reduction in

coverage compensated by an increase in precision? To investigate this possibility, we estimate

Newman estimates for each of the 100 bootstrapped samples used above. Results are shown

in Panel (d) of Figure 1. We do not observe any shrinkage in the confidence intervals: if

anything, they are much larger than in Panel (b). Based on this, we conclude that, for our

data, our estimator does better than the Bradley and Terry (1952) estimator.

6 How informative are the rankings?

We now examine whether reported rankings are informative about differences in consumption

levels across households.
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6.1 Predictive power

We start by regressing the difference in poverty index between households i and j (in the

dyadic dataset) on the reported and constructed pairwise ranks between i and j, as described

in Section 2. Here, the “reported rank” variable is the share of reported ranks showing j

richer than i. The “constructed rank” variable is a dummy equals to 1 if j is ranked richer

than i by the pairwise method.

Since, in the presence of ties, it is possible that j is ranked richer than i and i is ranked

richer than j, all differences in outcomes are taken as j’s value minus i’s value to net them.

Results are presented in Table 3. We show regressions on four main outcomes, (1) food

consumption per capita; (2) number of months during which the household suffered from

food shortages; (3) PMT index; and (4) PPI index.41 Except for food shortages, these

measures are constructed such that a positive value means less poverty. Thus, if ranks are

informative, we expect the coefficient of the different rank measures to be positive in columns

1, 3 and 4: when i is ranked poorer than j, then j’s consumption, PMT and PPI indices

should be higher than i’s. The reverse is expected for column 2.

We observe limited evidence that pairwise rank measures are informative about con-

sumption differences per capita, PPI, or PMT. Most of the estimates are non-significant

and sometimes have the wrong sign (e.g., for food expenditure per capita). The coefficients

reported in column 2 are negative as predicted, but only significant for constructed score’s

difference. The estimated R2 is quite low throughout. From this, we conclude that, in gen-

eral, rankings contain relatively limited information about consumption differences across

ranked households.

Next we move the analysis to the level of the individual household. Here the depen-

dent variable is the consumption level. Results, presented in Table 4, show that estimated

coefficients are not statistically significant. These results are perhaps not surprising, given

the findings from Table 3—and the fact that the information content of Pi is more affected

by the presence of ties than reported ranks. We also see from Table A9 that Borda counts

are not better at predicting consumption and wealth: if anything, the use of Borda count

estimates produces smaller R2 values.

To understand why individuals do not seem to make accurate rankings, we examine

which household characteristics are predictive of reported ranks. The results are shown in

Table 5. Regarding the PPI index, the pattern is consistent with expectations: if i has a

lower PPI index than j, k is more likely to report that i as poorer than j. For consumption

41In Table A8, we run the same regression for an extensive set of additional outcomes, e.g., different
consumption variables, shortfall in consumption, and an index of improvement in consumption relative to
last year.
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variables, j is ranked richer than i (positive coefficient) if j reports higher food consumption

or higher spending on durables. We see that the variables “months of food shortages”,

“expressed food worries in the last 12 months”, and“received gifted food in the past week”

consistently predict that an observer ranks a household as poorer. Contrary to our initial

expectations, we do not find that conspicuous consumption expenditures—as measured in

our survey—predict reported rankings.

6.2 Ranking Accuracy

Next, we examine the accuracy of reported ranks by comparing them with rankings obtained

using the PMT and PPI indices constructed with the survey data and which, for the purpose

of this exercise, we regard as the true rankings. Overall, ranking accuracy is pretty low:

reported rankings are right 52.5% of the time when we take PMT rankings as comparison,

and 55.8% compared to PPI rankings.42 Ranking accuracy is even lower if we use food

expenditure per capita as comparison.

These average levels of accuracy are only barely above what could be achieved by random

guessing. Could this be because the indices themselves are very noisy? To investigate this

possibility, we examine whether PMT and PPI predict consumption per capita rankings

well. We find that they do: the pairwise i − j difference in PMT and PPI has the same

sign as the difference in consumption per capita in 71% and 69% of cases, respectively. We

nonetheless find that k respondents are more able to correctly rank ij pairs in terms of PPI

or food consumption if the difference between i and j is large. When the PPI indices or

food consumption levels of i and j are close, k’s ranking ability is not different from flipping

a 50/50 coin. But when the difference is large (e.g., around the 80th or 90th percentile), k

is 1.4 to 1.5 times more likely to provide a correct ranking (i.e., the probability of correct

ranking is around 58 to 60%).43 It follows that, with a sufficiently large number of reports

on such ij pairs, our methodology should yield a correct ranking with a reasonably high

probability. To illustrate, if we assumed that the probability that each k respondent ranks

correctly an ij pair is 60%, the probability of mis-ranking would fall from 40% for a single

report to 35.2%, 31.7%, and 24.7% for 3, 5 and 11 reports, respectively.44 This only applies

42Because PPI is an integer index, some i, j pairs have the same PPI value and thus cannot be ranked.
They are omitted from this analysis.

43We also find that k respondents are more sensitive to differences in PPI or food consumption in ij pairs
that are on average richer. While this finding is not statistically significant, it nonetheless suggests that
respondents are better able to distinguish differences in socio-economic status among the rich than among
the poor.

44Calculations based on binomial distribution calculations. Results for an even number of reports are
slightly less precise because we classify a mean of 0.5 as missing, but they show the same improvement in
accuracy with the number of reports.
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to ij pairs that are sufficiently different, however.

To get a better sense of how informative the reported ranks are overall, we simulate a

ranking model calibrated on the data to assess how large the standard deviation of observa-

tion error would have to be in order to produce the ranking accuracy reported above.45 To

conduct this counterfactual experiment, we again use as ‘truth’ the PMT and PPI indices

constructed from the data. All indices are standardized to have mean 0 and variance 1.

We assume that each observer k sees a signal yki = yi + eki where yi is either the PMT or

PPI of i and where eki is, as before, an i.i.d. observation error with mean 0 and variance

σ2
e—and similarly for ykj . We then construct a simulated reported rank rkij = 1 if yki > ykj

and 0 otherwise. We do this for various values of σe until we find a value that gives the same

ranking accuracy as above.46

Unsurprisingly, given the poor ranking accuracy of the actual reported ranks, we must

posit quite a large σe in order to reproduce their ranking accuracy: across simulated vectors

of observation errors, σe has to be at least 7.5 in order to reproduce the 52.4% PMT targeting

accuracy of reported ranks; and the corresponding values for PPI is 3.5. In most simulations,

σe has to be larger than 10 to match the accuracy of reported ranks. In other words, the

standard deviation of the observation error eki has to be a large multiple of the standard

deviation of the truth yi in order to account for the low ranking accuracy of reported ranks.

This exercise is purely indicative, since we do not observe the ’true’ material welfare of

individuals i and j. But it gives an idea of the magnitude of the observation errors that

characterizes our empirical setting.

Poor ranking accuracy may be due to a poor selection of observers k. If so, the usefulness

of our method may be improved by selecting respondents with observable characteristics that

predict ranking accuracy. To investigate this possibility, we regress each observer’s ranking

accuracy on a vector of respondent characteristics. To avoid oversampling observers who

provide more rankings, we define, for each individual ranker k, the Ranking Accuracy of that

observer as the share of pairs i − j for which k accurately ranked i poorer or richer than j

according to the i − j difference in either their PPI, PMT, or household food expenditure

per capita. We then regress this variable on observer characteristics. The results are shown

in Table 6.47 We do not find any convincing evidence that observer characteristics predict

ranking accuracy, leaving little scope for improving the estimation by over-sampling observers

45The simulated dataset includes all the i, j, k triads for which a rank is reported by k and PMT or PPI
values exist for both i and j. Pairs i, j that have identical PPI are dropped from the simulation. The sample
size is 446 distinct triads for PMT and 283 for PPI.

46By construction, the ranking accuracy of the simulated reported ranks is 100% when σe = 0.
47We can only estimate accuracy for respondents who ranked at least one pair of neighbors for which we

have completed surveys, which represents 58% of the respondents.
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with certain characteristics.

6.3 Poverty Targeting

From a policy standpoint, accurate rankings between any given pair may not be needed.

Instead, the policymaker may simply want to identify who is, say, below the median of the

distribution. To test whether aggregate peer rankings can be used to do such identification,

we create a dummy equal to 1 if a household’s aggregate ranking puts it below the median

of its EA. It is zero if the household is ranked at or above the median and missing if the

household is not ranked. In Table 7, we use this dummy as a regressor, testing whether it

correlates with whether the household is below the median based on the survey measures.

Column 1 compares the categorization obtained thanks to the peer rankings exercise to that

obtained from the PMT measure, column 2 to the categorization obtained from the PPI

measure, and column 3 to the categorization based on food expenditure per capita. Quite

strikingly, being categorized below the median does not significantly increase the likelihood

that one is below the median based on any of the three survey measures, suggesting that

even coarse categorizations are difficult to obtain from peer rankings.

To test whether these mostly-zero results are driven by the fact that the probability of

being ranked could itself be affected by one’s position, we create a dummy equal to 1 if a

household could not be given an aggregate ranking (this happened when none of the respon-

dents surveyed listed that household as a known neighbor). Around 23% of the sample is

“unranked”. To test whether those unranked are disproportionately poor or disproportion-

ately rich, the bottom panel of Table 7 shows regressions with this “unranked” dummy as

the regressor. There is no statistically significant correlation, suggesting that categorizing

those “unranked” as poor would not help improve targeting based on peer rankings.

7 The self-ranking treatment

In this section we test whether including self-ranks improves accuracy by exploiting the fact

that we randomized whether observers were asked to include themselves into their rankings.

Since observers presumably have better information about themselves, they should be better

able to rank themselves relative to others (see, however, Cruces et al. (2013)). Self-ranking

may also be less accurate if observers do not rank themselves truthfully for instrumental

reasons, e.g., they may understate their rank if they expect their report to be used in an

anti-poverty program targeting (e.g., Bloch and Olckers 2021). To eliminate this concern,

we ensure respondents understand that their rankings will not be used for any targeting
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purpose. Misreporting may also arise out of self-image or social-image considerations, e.g.,

to look less poor than they are (e.g., Ghiglino and Goyal 2010).

To test whether including self-ranks improves the accuracy of aggregate rankings, we

re-estimate Table 7 excluding self-ranks from the data. Results, shown in Table A10, show

that dropping self-ranks improves targeting accuracy somewhat. Those who rank below the

median of their EA when self-ranks are excluded are 12.7 percentage points more likely to be

below the median of the PMT index (Panel A, column 1). These differences are significant at

the 10% and 5% level, respectively, and they are larger than those reported in Table 7 when

self-ranks are included. This suggests that the way observers rank themselves is unhelpful

for the purpose of identifying the relatively poor.

To investigate why that is the case, we check whether respondents rank themselves dif-

ferently from what other observers report about them (e.g., Cruces et al., 2013). To do this,

we estimate a regression of the form:

ykij = αSk
ij + θij + uk

ij

where: ykij = 1 if observer k ranks i poorer than j, 0 if k ranks i richer than j, and missing

otherwise; Sk
ij = 1 if k = i, −1 if k = j and 0 otherwise; and θij is a pairwise fixed effect.

If α < 0, this implies that respondents give themselves a higher rank than the rank others

give them—possibly reflecting self-image or social-image considerations. In contrast, if α is

larger than 0, it means that observers rank themselves lower than the rank others give them,

i.e., it is more often the case that ykij = 1 when i = k than when i ̸= k and that ykij = 0

when j = k than when j ̸= k. This may be due to a social norm of humility or as a learned

heuristic to avoid requests for financial assistance from neighbors.48 The experiment is not

designed to identify which is the most likely explanation.

Results, presented in Table 8, show that α is significantly smaller than 0 and that the

magnitude of the effect is large. By construction, actual ranks are equal to 1 half of the

time. A coefficient of −0.28 means that respondents rank themselves poorer than others 22

percent of the time relative to the median of 50 percent. This indicates that a large fraction of

respondents rank themselves as richer than others even though they are judged to be poorer

by other observers. Further confirmation comes from observing that 62% of respondents

rank themselves among the richest of their neighbors while only 22% rank themselves among

the poorest. This rules out strategic under-reporting, but over-reporting is substantial. In

48Alternatively, α > 0 could arise because observers rank others based on their conspicuous consumption
but rank themselves based on their own full consumption. This would imply some myopia: people systemat-
ically misjudge the true poverty of others even though they realize that their own conspicuous consumption
gives an inflated image of their true prosperity.
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addition, we find that self-ranking observers who are in the bottom half of their EA in terms

of PMT or reported consumption tend to overestimate their ranking more than those in the

upper half (see Columns 3-7 of Table 8). This suggests that there may be a psychological

cost to admitting one’s own poverty (e.g., Ghiglino and Goyal 2010, Bramoullé and Ghiglino

2022).

8 Propensity to rank and to be ranked

A main finding from our application is that rankings are far from complete. This is because

many respondents did not know some of their neighbors enough to list and rank them. To

further investigate the correlates of the propensity to rank and the propensity to be ranked,

we construct a dyadic dataset indexed by the respondent k and a ranked household i in the

same EA. We create a dependent variable mki = 1 if respondent k ranks household i relative

to any other household, and 0 otherwise. We regress this dummy on characteristics of both

i and k in Table 9.

We find that the geographic distance between the respondent k and household i has a

significant (negative) effect on reporting. The absolute magnitude of the coefficient is small,

but this is primarily because average reporting is low to start with.49

In column (2), we add information about consumption. We see that, some variables

indicating that household i is poor tend to be negatively correlated with being ranked by

k. For instance, households who experience food shortages over more extended periods

are less likely to be reported on by k. We find limited evidence, however, that detailed

consumption expenditures as reported by household i consistently helps predict reporting by

k. If anything, the higher the food consumption, the less likely a household would be ranked

by others. The category of expenditures classified as ’conspicuous’, e.g., beauty products,

eating out, and charitable contributions, positively predict being ranked by others.

Overall, these findings confirm that k’s propensity to rank i can be partly accounted for

by observable characteristics of i and how they compare to k’s. This is reassuring because it

indicates that k takes relevant characteristics of i into consideration when choosing to rank i

relative to other households. The findings also suggest that richer households based on their

PPI are in general more likely to be ranked. A plausible explanation is that their wealth is

easily observable. With this ranking methodology, the rich are more likely to be ranked and

thus the poor are less likely to appear in constructed rankings. This finding is problematic

if the purpose of eliciting income and wealth rankings is, as is often the case, to identify the

49Experimentation with alternative functional forms indicate that the log form chosen here fits the data
well.
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poor.

9 Conclusion

This paper introduced a new method for aggregating partial poverty rankings reported by

multiple observers. The method we propose relies on the same data as the commonly applied

Borda count method, but it averages pairwise ranks instead of reported ranks. We show

that the method outperforms the Borda count method when observers only rank a subset of

target households and the subset of households they rank are more similar than random—a

phenomenon we call correlated rankable sets.

We then compare the performance of our pairwise method to that of the Borda count

method in two datasets. In the first dataset coming from the rural Indonesia setting of

Alatas et al. (2012), the overwhelming majority of observers all rank the same households.

In such setting, the pairwise approach offers no a priori advantage but is it outperformed by

the Borda method? We find that it does not: normalized rankings from both methods are

highly correlated and they are equally good at predicting normalized income rankings based

on survey data.

In the second data, the urban setting of Abidjan, observers appear less knowledgeable of

their neighbors and they all report partial rankings—a situation which raises the possibility

of correlated rankable sets. Due to incompleteness in reported rankings, both the pairwise

method and the Borda count method fail to rank a large proportion of target households.

For those they are able to rank, however, the two method produce highly correlated nor-

malized rankings. These rankings, however, are not precisely estimated. A more accurate

picture would require increasing the density of reporting. The pairwise and Borda method

do, however, outperform a commonly used pairwise ranking algorithm used for sports com-

petition: not only does this algorithm rank much fewer target households, it also produces

rank estimates that are much less precisely estimated.

We also find that, in the Abidjan data, pairwise rankings reported by respondents are

only mildly correlated with various poverty measures collected on households targeted by

the ranking exercise. These results confirm for Côte d’Ivoire the conclusion of Alatas et

al. (2012) for rural Indonesia, namely, that reported ranks do capture relevant information

about relative welfare but this information is noisy. We also find that reported rankings

seem to reflect a few observable expenditures only. In addition, we investigate whether

reported rankings correlate better with the conspicuous consumption expenditures of the

target households. We find that they do not. We also note that respondents asked to

include themselves in their ranking tend to overstate their relative income position.
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From this experiment, we conclude that, in an urban setting where people know little

about their neighbors, rankings constructed based on peer rankings are probably insufficient

to achieve poverty targeting at a cost lower than surveying households directly. For the

same reason, our method seems to work better in a rural setting—but does not require the

extensive overlap in comparison sets across observers that the Borda count method requires.

In this paper, we have demonstrated the potential usefulness of an original methodology

that equals—and often surpasses—existing methods for aggregating partial rankings: it

requires fewer assumptions than the commonly used Zermelo-Bradley-Terry algorithm and

is able to rank more pairs; and it avoids the potential biases of averaging ranks or scores across

partially overlapping observers. We also provided a way of producing confidence intervals

for estimated ranks which, in our urban data, confirmed that ranks were only estimated

noisily. This method can be extended to many situations in which individuals face options

over which they have identical true preferences, but only have partial information and can

only rank some options relative to each other.
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Figure 1: 90% Confidence Intervals Across Methods

(a) Estimated Pairwise Index (b) Normalized pairwise ranks

(a) Normalized Borda ranks (b) Normalized Newman ranks

Notes: All bootstrapped values have been ’jittered’ to show their frequency distribution
over 100 replications. Each dot corresponds to a normalized rank obtained from a bootstrap
sample, conditional on its corresponding sample estimate.

45



Table 1: Mean Square Error - uncorrelated rankable sets

Using all alternatives Using only ranked alternatives
Size of rankable set S = Size of rankable set S =

Estimator: V = 0.1 0.2 0.4 0.7 0.1 N 0.2 N 0.4 N 0.7 N
Pairwise 0 0.059 0.020 0.001 0.00009 0.042 1,801 0.009 2,579 0.000 2,969 0.00001 2,999
Borda count 0.060 0.026 0.004 0.00021 0.046 1,849 0.016 2,580 0.002 2,969 0.00013 2,999
Scoring 0.041 0.015 0.001 0.00006 0.015 1,849 0.003 2,580 0.000 2,969 0.00000 2,999
Pairwise 0.1 0.059 0.018 0.003 0.00087 0.043 1,847 0.010 2,623 0.002 2,973 0.00087 3,000
Borda count 0.061 0.024 0.004 0.00093 0.047 1,905 0.016 2,623 0.004 2,973 0.00093 3,000
Scoring 0.040 0.012 0.002 0.00060 0.014 1,905 0.003 2,623 0.001 2,973 0.00060 3,000
Pairwise 0.3 0.063 0.026 0.013 0.00541 0.049 1,847 0.019 2,623 0.012 2,973 0.00541 3,000
Borda count 0.064 0.029 0.008 0.00316 0.052 1,905 0.022 2,623 0.008 2,973 0.00316 3,000
Scoring 0.044 0.017 0.005 0.00263 0.022 1,905 0.009 2,623 0.005 2,973 0.00263 3,000
Pairwise 0.5 0.072 0.040 0.038 0.01663 0.064 1,847 0.034 2,623 0.037 2,973 0.01663 3,000
Borda count 0.071 0.037 0.014 0.00660 0.063 1,905 0.031 2,623 0.014 2,973 0.00660 3,000
Scoring 0.052 0.025 0.011 0.00610 0.034 1,905 0.018 2,623 0.010 2,973 0.00610 3,000
Pairwise 0.9 0.090 0.072 0.066 0.04783 0.094 1,847 0.066 2,623 0.065 2,973 0.04783 3,000
Borda count 0.085 0.056 0.031 0.01574 0.086 1,905 0.053 2,623 0.030 2,973 0.01574 3,000
Scoring 0.070 0.045 0.028 0.01731 0.062 1,905 0.040 2,623 0.027 2,973 0.01731 3,000

Notes: This Table reports the Mean Square Error of the pairwise, Borda count, and scoring methods applied to the same
simulated data. Simulations are based on 100 sets of 30 alternatives ranked by 9 observers per set—3000 alternatives in total.
V is the standard deviation of the noise added to the ’true’ value of a log(income) variable with mean zero and unit variance.
Rankable sets are uncorrelated by construction: each observer sees each of the 30 alternatives with equal probability S. It follows
that S is the average share of the 30 alternatives ranked by each observer. N is the number of ranked alternatives. We fix the
random seed across simulations to ensure that the realizations of income are identical across all parameter values. The Mean
Square error is calculated as the square of [(estimated rank minus the true rank) divided by 30]—where estimated rank and
true rank are both a number from 1 to 30 and the division by 30 is used to normalize the MSE estimates. With 30 alternatives,
the MSE of no information (all ranks tied at 15.5) is 0.0832 and the MSE of the reverse ranking (the worst possible outcome)
is 0.333. MSE estimates increase as we move down (more observation noise) and left (less coverage). The pairwise method and
the Borda count methods rely on the identical reported rank data. We show in yellow those simulations in which the pairwise
method performs better than the Borda method, and in green those in which the Borda method performs better than the
pairwise method. The scoring method relies on income reported, possibly with error, by each observer. Reported incomes are
averaged across observers within each set to compute ranks in a set. The scoring method performs better than the pairwise
and Borda count methods, but it requires observers to report quantitative income data, not just ranks. In the left-hand panel,
MSE calculations includes all alternatives. Unranked alternatives receive a median rank. This serves to compare methods
that generate differences in the number of ranked alternatives. In the right-hand panel, MSE’s are calculated using ranked
alternatives only. There is no difference between the two panels when the number of ranked alternatives is 3000 (the maximum).
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Table 2: Mean Square Error - correlated rankable sets

Using all alternatives Using only ranked alternatives
Size of rankable set S = Size of rankable set S =

Estimator: V = 0.1 0.2 0.4 0.7 0.1 N 0.2 N 0.4 N 0.7 N
Pairwise 0 0.127 0.061 0.022 0.00713 0.136 2,111 0.043 2,563 0.004 2,737 0.00076 2,914
Borda count 0.136 0.102 0.034 0.00752 0.149 2,111 0.091 2,563 0.017 2,737 0.00120 2,914
Scoring 0.036 0.028 0.020 0.00700 0.012 2,111 0.006 2,563 0.004 2,737 0.00075 2,914
Pairwise 0.1 0.135 0.070 0.023 0.00825 0.148 2,079 0.053 2,537 0.005 2,734 0.00150 2,908
Borda count 0.143 0.109 0.038 0.00903 0.159 2,084 0.099 2,537 0.021 2,734 0.00221 2,908
Scoring 0.040 0.029 0.020 0.00750 0.015 2,084 0.008 2,537 0.005 2,734 0.00131 2,908
Pairwise 0.3 0.145 0.088 0.031 0.01058 0.163 2,061 0.072 2,535 0.013 2,734 0.00397 2,908
Borda count 0.152 0.125 0.052 0.01191 0.171 2,084 0.119 2,537 0.037 2,734 0.00505 2,908
Scoring 0.045 0.033 0.022 0.00926 0.023 2,084 0.014 2,537 0.007 2,734 0.00303 2,908
Pairwise 0.5 0.150 0.101 0.048 0.01875 0.171 2,057 0.088 2,533 0.029 2,734 0.01140 2,908
Borda count 0.155 0.135 0.070 0.01585 0.176 2,084 0.131 2,537 0.057 2,734 0.00898 2,908
Scoring 0.053 0.041 0.028 0.01219 0.034 2,084 0.022 2,537 0.013 2,734 0.00611 2,908
Pairwise 0.9 0.154 0.120 0.076 0.05172 0.176 2,050 0.109 2,529 0.055 2,734 0.04311 2,908
Borda count 0.157 0.145 0.099 0.02805 0.179 2,084 0.143 2,537 0.088 2,734 0.02159 2,908
Scoring 0.074 0.061 0.045 0.02395 0.063 2,084 0.046 2,537 0.031 2,734 0.01776 2,908

Notes: This Table reports the Mean Square Error of the pairwise, Borda count, and scoring methods applied to the same
simulated data. Simulations are based on 100 sets of 30 alternatives ranked by 9 observers per set—3000 alternatives in total.
V is the standard deviation of the noise added to the ’true’ value of a log(income) variable with mean zero and unit variance.
Rankable sets are correlated by construction: each observer sees S*30 consecutive alternatives, with alternatives ranked by
their true income value. A set has 30*(1-S) different sequences of consecutive alternatives. Each of the 9 observers is randomly
assigned, with equal probability, to one of these sequences. It follows that S is the share of the 30 alternatives that is ranked
by each observer. In the Table, N is the number of ranked alternatives. We fix the random seed across simulations to ensure
that the realizations of income are identical across all parameter values. The Mean Square error is calculated as the square of
[(estimated rank minus the true rank) divided by 30]—where estimated rank and true rank are both a number from 1 to 30
and the division by 30 is used to normalize the MSE estimates. With 30 alternatives, the MSE of no information (all ranks
tied at 15.5) is 0.0832 and the MSE of the reverse ranking (the worst possible outcome) is 0.333. MSE estimates increase as
we move down (more observation noise) and left (less coverage). The pairwise method and the Borda count methods rely on
the identical reported rank data. We show in yellow those simulations in which the pairwise method performs better than the
Borda method, and in green those in which the Borda method performs better than the pairwise method. The scoring method
relies on income reported, possibly with error, by each observer. Reported incomes are averaged across observers within each
set to compute ranks in a set. The scoring method performs better than the pairwise and Borda count methods, but it requires
observers to report quantitative income data, not just ranks. In the left-hand panel, MSE calculations includes all alternatives.
Unranked alternatives receive a median rank. This serves to compare methods that generate differences in the number of ranked
alternatives. In the right-hand panel, MSE’s are calculated using ranked alternatives only. There is no difference between the
two panels when the number of ranked alternatives is 3000 (the maximum).
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Table 3: Relative Rank vs. Relative Survey-Measured Poverty: Pair-Level

j− i difference in: (1) (2) (3) (4)
Food exp Months food PMT PPI
per ca short index index

Reported rank 0.219 -0.485 0.078 1.165
(0.355) (0.347) (0.050) (0.996)

log(distance) 0.070 0.051 0.014 0.017
(0.072) (0.078) (0.012) (0.244)

Constant -0.077 0.119 -0.125* -1.223
(0.481) (0.463) (0.067) (1.349)

R2 0.003 0.004 0.009 0.005
Number of bserva-
tions

691 645 416 751

Constructed rank -0.243 -0.843*** 0.145*** 0.794
(0.283) (0.315) (0.046) (0.819)

log(distance) 0.009 -0.000 0.007 0.068
(0.063) (0.065) (0.011) (0.209)

Constant 0.394 0.753* -0.142** -1.494
(0.416) (0.424) (0.064) (1.171)

R2 0.001 0.009 0.019 0.006
Number of bserva-
tions

1014 951 570 1099

Notes: We report two separate regressions for each constructed variable of aggregated rankings, as described in Section
6. The reported rank variable is the share of reported ranks showing j richer than i. The constructed rank variable
is a dummy equals to 1 if j is ranked richer than i (including the case where it is both) by the pairwise method. A
negative difference indicates that j is ranked poorer than i. All dependent variables are calculated as the value for
household j minus the value for household i: a positive difference means that i is poorer than j. Food expenditures:
Total of consumption expenditures on staples, meat, vegetables, fruits, drinks, and alcohol reported for a one week
recall period: Months food short: Number of months the household experienced a food shortage over the last twelve
months. PPI and PMT Scores are computed following the methodology described in Section 4.3. Robust standard
errors are shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 4: Aggregate Rank vs. Survey-Measured Poverty Level : Individual Level

Levels of: (1) (2) (3) (4)
Food exp Months food PMT PPI
per ca short index index

P index (relative
position)

0.005 -0.024 0.010 0.017

(0.037) (0.039) (0.007) (0.127)

log(distance) -0.023 -0.050 0.011 -0.210
(0.075) (0.080) (0.015) (0.295)

Constant 4.095*** 1.835*** 13.097*** 35.134***
(0.482) (0.471) (0.084) (1.686)

R2 0.001 0.003 0.049 0.003
Observations 291 282 167 291

Notes: We report a regression for the constructed variable of aggregated rankings, as described in Section 6. The
relative position of household i is variable P in equation (2.3.2), that is, the difference between the number of
households below i minus the number of households above i. The difference is 0 when all households a tied, meaning
no one is ranked above anyone else. A high score means the individual is ranked richer. All dependent variables are
levels of consumption variables. Food expenditures: Total of consumption expenditures collected with a one week recall
period: staples, meat, vegetables, fruits, drinks, alcohol. Social expenditures” Total of consumption expenditures
collected with a one month recall period: telecom, beauty products, entertainment, charitable contributions. Annual
expenditures: Total of consumtion expenditures collected with a one year recall period: shoes and clothing, furniture,
school fees. Total consumption: Weekly expenditures x 52 + monthly expenditures x 12 + annual expenditures. We
then divide by the number of household members (adults and children). Was given food (yes): Dummy equal to
1 if members of the household have received free food from other households or organizations. Food worries (yes):
Dummy equal to 1 if respondents answers yes to question . Months food short: Number of months the household
experienced a food shortage over the last twelve months. Days skipped: Number of days with skipped meals over
the last three months. Improvement in food: Likert scale from 1 (much worse) to 5 (much better) on whether food
situation of the respondentś household has improved relative to previous year. PPI and PMT Scores are computed
following the methodology described in Section 4.3. Only the surveyed respondents for which we recovered a rank are
included in this regression. Robust standard errors are shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 5: Predictors of rankings: Pairwise comparisons

Dep. var. =1 if resp. k
reported that i is poorer than j

(1) (2) (3)

Indep. Variables: Differences between j and i in:

PPI Index 0.002 0.001 0.003∗∗

(0.001) (0.001) (0.001)

HH’s head unemployed -0.035 -0.038 -0.033
or inactive (0.029) (0.029) (0.031)

Household Size 0.005 0.013∗∗ 0.005
(0.004) (0.005) (0.005)

Value of food expenditure 0.010∗∗∗

per capita in the last week (0.004)

Value of conspicuous -0.006
consumption expenditures in the last month (0.004)

Spending on durables per 0.018
capita in the last year (0.019)

Received gifted food -0.118∗∗∗

last week (yes=1) (0.043)

Food worries during -0.044
last 12 months (yes=1) (0.034)

Months with food -0.004
shortages in the last year (0.006)

Days with skipped 0.000
meals in last 3 months (0.001)

Improvement in food -0.029∗

situation last year (1 to 5) (0.017)

log(distance from k 0.011 0.012 0.004
to i) (0.011) (0.011) (0.011)

Semi-Rural EA -0.006 0.010 -0.021
(0.040) (0.041) (0.044)

Constant 0.515∗∗∗ 0.490∗∗∗ 0.537∗∗∗

(0.047) (0.047) (0.048)

R2 0.009 0.020 0.030
Observations 887 887 813

Notes: The unit of observation is a triad. The outcome variable is an indicator equal to 1 if k ranked j poorer
than i and 0 otherwise. It is missing k did not rank j relative to i. ij pairs including the respondent k are
dropped. The three columns contain different types of regressors, e.g., assets, expenditures, and experienced
poverty. Each regressor is the difference in the value of the variable between j and i. Any missing distance is
replaced by the average distance in the EA and we control for such a case in the regressions. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.



Table 6: Predictors of ranking accuracy

PMT PPI Food expenditure
index index per capita
(1) (2) (3)

Respondent is a woman 0.044 -0.079 0.091∗

(0.056) (0.054) (0.052)
Respondent is a migrant 0.022 0.003 -0.068

(0.059) (0.057) (0.055)
Respondent is Non-Ivorian 0.022 -0.027 -0.012

(0.060) (0.059) (0.054)
Respondent is an informant 0.063 0.080 -0.062

(0.085) (0.095) (0.065)
Respondent a hh head 0.036 -0.025 0.092

(0.057) (0.056) (0.056)
Semi-Rural EA dummy -0.035 0.041 0.037

(0.055) (0.051) (0.052)
PPI Index -0.000 0.004∗ 0.002

(0.002) (0.002) (0.002)
Food expenditure p.c. in the 0.014∗ 0.002 0.014∗∗

last week (0.008) (0.008) (0.007)
Asked to self-rank 0.037 0.016 0.047

(0.045) (0.044) (0.041)
# of neighbors listed -0.008 0.013 0.002

(0.012) (0.011) (0.010)
Household Size 0.014∗ 0.001 0.026∗∗∗

(0.008) (0.008) (0.007)
Belongs to a community group 0.003 -0.039 0.009

(0.045) (0.046) (0.043)
Constant 0.402∗∗∗ 0.330∗∗ 0.139

(0.145) (0.137) (0.123)

R2 0.026 0.037 0.070
Observations 285 278 285
Sample Mean of Ranking Accuracy 0.535 0.521 0.511

Notes: Each column is a regression of the propensity for an observer k to rank accu-
rately two households i and j according to the variable listed at the top. The number of
observations is the number of observers for whom we can obtain the accuracy measures
(i.e., they ranked enough neighbors within our sample). The number of observations
for the PPI is lower since accuracy is missing when two ranked neighbors had the exact
same index, which happened more often for PPI than for the PMT/food expenditure
that are more precise indices. Robust standard errors in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.



Table 7: Can peer rankings identify those below the median?

Ranked Below the Median According to:

PMT PPI Food Expenditure
Index Index Per Capita

Panel A.

Household ranked below me-
dian by pairwise method

0.105 0.019 -0.006

(0.085) (0.053) (0.060)
Constant 0.395*** 0.411*** 0.453***

(0.033) (0.029) (0.026)

Observations 172 311 311

Panel B.

Household not ranked by pair-
wise method

0.167 -0.023 0.035

(0.101) (0.056) (0.054)
Constant 0.444*** 0.459*** 0.469***

(0.013) (0.014) (0.013)

Observations 207 507 507

Notes: In the first two panels, we create a dummy equal to 1 if the aggregate pairwise ranking puts the household below the
median of its EA. It is zero if the household is ranked at or above the median and missing if the household is not ranked by the
pairwise method. We construct the aggregated ranking as the relative position of individual i in the constructed network, i.e.,
how many people can be ranked as poorer than i, minus how many can be ranked richer. Only individuals ranked by at least
one other respondent are considered. We run OLS regressions of this dummy on a dummy for whether the household is below
the median based on one of the survey measures (PMT in column 1, PPI in column 2, and the food expenditure per capita in
column 3). The table reads as follows: individuals ranked below the median of the aggregate peer ranking are 10.1 percentage
points more likely to be below the median of the PMT score (Column 1). In the bottom panel, the dependent variable is
a dummy equal to 1 if the household was not ranked by any observer. Robust standard errors are shown in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 8: Testing for Self-Ranking Bias

(1) (2) (3) (4) (5) (6) (7)
Ranked i poorer than j

Sk
ij -0.281∗∗∗ -0.283∗∗∗ -0.262∗∗∗ -0.594∗∗∗ -0.245∗∗∗ -0.202∗∗∗ -0.306∗∗∗

(0.031) (0.031) (0.050) (0.081) (0.048) (0.064) (0.042)

Constant 0.518∗∗∗ 0.515∗∗∗ 0.535∗∗∗ 0.531∗∗∗ 0.531∗∗∗ 0.500∗∗∗ 0.532∗∗∗

(0.004) (0.004) (0.005) (0.002) (0.007) (0.008) (0.006)
R2 0.136 0.139 0.112 0.450 0.112 0.078 0.159
Observations 1298 1337 680 313 732 598 739
Number of ij pairs 704 732 443 244 479 421 459
Sample Restriction 30 EAs All 34 EAs Bottom Cons Bottom PMT Bottom PPI Men Women

Notes: The dependent variable is 1 if the respondent k reports that i is poorer than j, 0 if i is richer, and missing if k
does not rank i and j. Variable Sk

ij is 1 if k=i and -1 if k=j, and 0 if k is not i or j. Column 1 only uses the 30 EAs
without sampling issues / Column 2 uses all 34 EAs. The other columns are restricted to respondent k in the bottom
50% within their EA across different wealth measures. Sample sizes vary because of ties and missing observations
for some respondents who were not asked the PMT questions, as described in the data section. Observations from
the no-self-ranking treatment are omitted since they contain no useful information. Including them anyway produces
identical results. Fixed effects are include for each (i,j) pair. Robust standard errors are provided in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 9: Predictors of propensity to rank others
(1) (2)
OLS OLS

log(distance from k to i) -0.017∗∗∗ -0.017∗∗∗

(0.001) (0.001)

Semi-Rural EA -0.036∗∗∗ -0.044∗∗∗

(0.008) (0.008)

Respondent k: Key Informant -0.048∗∗∗ -0.048∗∗∗

(0.010) (0.010)

Value for i of the following var:

PPI Index -0.002∗∗∗ -0.001∗∗

(0.000) (0.001)

Household Size -0.003∗ -0.003
(0.002) (0.002)

HH’s head unemployed or inactive 0.013 0.023∗

(0.012) (0.012)

Respondent: Non-Ivorian 0.010 0.026∗

(0.013) (0.014)

Respondent: Migrant -0.020 -0.022∗

(0.013) (0.013)

Respondent: Woman -0.014 -0.011
(0.010) (0.010)

Received gifted food last week (yes=1) 0.007
(0.016)

Food worries during last 12mo (yes=1) -0.018∗

(0.010)

Value of food expenditure in the last week per capita -0.001
(0.002)

Value of conspicuous expenditures in the last month 0.005∗∗∗

(0.002)

Spending on durables in the last 12 months per capita 0.002
(0.005)

Value for i - Value for k of the following var:

PPI Index 0.001∗∗∗ 0.002∗∗∗

(0.000) (0.000)

Household Size 0.002∗ 0.001
(0.001) (0.001)

HH’s head unemployed or inactive 0.004 -0.001
(0.009) (0.009)

Respondent: Non-Ivorian 0.006 -0.001
(0.009) (0.010)

Respondent: Migrant 0.005 0.008
(0.009) (0.009)

Respondent: Woman 0.009 0.004
(0.007) (0.007)

Received gifted food last week (yes=1) 0.014
(0.012)

Food worries during last 12mo (yes=1) 0.017∗∗

(0.007)

Value of food expenditure in the last week per capita -0.002
(0.001)

Value of conspicuous consumption expenditures in the last month -0.001
(0.001)

Spending on durables in the last 12mo per capita -0.001
(0.004)

Constant 0.290∗∗∗ 0.269∗∗∗

(0.024) (0.026)
R2 0.042 0.050
Observations 6835 6620

Notes: The unit of observation at the dyad level. The outcome variable is a dummy equal to 1
if k report a ranking for the individual i, 0 otherwise. Pairs i-k involving the respondent k are
dropped. Missing distance is replaced by the average distance in the EA and we control for such
a case in the regressions. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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A Additional Figures and Tables

Figure A1: Simulated Performance of Ranking Methods

(a) (b)

(c) (d)

Notes: These Figures show the simulated performance of the pairwise and Borda count methods. Each Figure shows results for
a given average proportion S of the sample that is observed by each observer and a given variance V of the mistakes observers
make in estimating other households’ income. The distribution of true income is log-normal with variance 1. The number of
observers and ranked households is the same across the Figures and shown under each of the them. The number of simulation
replications are indicated below each Figure.

Figure A2: Areas sampled by the AUDRI study

Notes: Enumeration areas selected for the ranking study are indicated in blue.
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Figure A3: Sample distribution of the PMT and PPI indices in the AUDRI Abidjan sample

Proxy Means Test index (PMT)

Poverty Probability Index (PPI)

Notes: We plot the distribution of the PPI (poverty probability index) and PMT (proxy mean test index). In the top Figure,
we show the PPI in our sample, using weights estimated by Innovations for Poverty Action (IPA) in April 2018 on the basis
of Côte d’Ivoire’s 2015 Enquête sur le Niveau de Vie des Ménages (Household Living Standard Measurement Survey). The
“Poverty Likelihood”, i.e., the probability to be below the National Poverty Line, is indicated in orange. The bottom Figure
shows the PMT index developed by the Ivorian Government. The two indices are described in more details in Section 4.3.
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Figure A4: Correlation across poverty measures in the Abidjan sample

Notes: Each Figure shows the sample correlation between pairs of the poverty measures discussed in Section 4.3. To increase
power, we use the full AUDRI study sample, irrespective of whether they participated in the ranking exercise or not.
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Table A1: Breakdown of the sample of observers by origin
Sample origin: # % % of Household Head % of Women
Individual survey (A) 119 23.47% 47.06% 56.30%
Listing survey only (A) 88 17.36 % 38.64% 69.32%
Selected on the spot (B) 230 45.36% 46.52% 46.96%
Informants (C) 70 13.81% 25.71% 71.43%
Total 507 100% 42.41% 56.41%

Notes: In EAs selected for the ranking exercise, we sought to interview all respondents to the Individual
survey (December 2019 to March 2020) and to the Listing survey (July to August 2019). The Table shows
those who could be found and surveyed for the ranking exercise. A number of additional households were
recruited on the spot as observers to increase sample size. Informants were also recruited on the spot
among traders and shopkeepers operating in the area.

Table A2: Estimated Fit of the PMT and PPI indices w.r.t. log(consumption per capita)
PMT Index PPI Index

(1) (2) (3) (4) (5) (6) (7)
Rural - Gov Urban - Gov Tot - Gov Tot - Ranking Tot - AUDRI Tot - Ranking Tot - AUDRI

R2 0.497 0.612 0.568 0.563 0.491 0.484 0.446
Observations 7,076 5,748 12,773 193 2,871 493 2,666

Notes: The table reports the R2 and the number of observations from the regressions run by the government of Côte d’Ivoire
to build their PMT score (columns 1, 2, 3). The numbers were shared to us by the CNAM in Côte d’Ivoire. The government
regressed log(food expenditure per capita) on the variables used to build the PMT score. Column 4 reports the R2 from the same
regression run on the households involved in the ranking exercise while Column (5) includes the full AUDRI sample. Column (6)
reports the fit from the PPI regression, i.e., regressing log(food consumption per capita) on the variables used to build the PPI
index. Column (7) reports the latter PPI regression on the full AUDRI sample. Note that the sample size is not exactly the same
between columns (5) and (7) due to differential missing patterns between variables used in the PMT vs. the PPI score.
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Table A3: PPI Scorecard for the Côte d’Ivoire 2015 National Poverty Line
Indicators Responses Points
1. In which district does this household reside? A. Abidjan 7

B. Yamoussoukro 5
C. Bas-Sassandra 9
D. Comoé 4
E. Denguélé 0
F. Gôh-Djiboua 3
G. Lacs 3
H. Lagunes 2
I. Montagnes 5
J. Marahoué 0
K. Savanes 2
L. Vallée du Bandama 2
M. Woroba 4
N. Zanzan 4

2. How many members does the household A. Three or less 17
have? B. Four or more 0
3. What is the highest educational level that A. None 0
the household head has completed? B. Primary 4

C. Secondary 5
D. Higher 12

4. Did all children aged 6 to 16 A. There are no children aged 6 to 16 11
attend school this school year? B. All children aged 6 to 16 attended school this year 7

C. At least one child aged 6 to 16 did not attend school this year 0
5. What is the mode of water A. Tap water in the dwelling 10
supply? B. Tap water in the yard 4

C. Tap water outside of the property 4
D. Well in the yard 1
E. Public well 2
F. Village pump 2
G. Surface water (creek, river, etc.) or other 0

6. What type of toilet do you use? A. W-C inside 7
B. W-C outside 6
C. Latrines in the yard 5
D. Latrines out of the yard 5
E. In nature (no toilet) or other 0

7. Where do you take your shower? A. Outside 0
B. Rudimentary shower 3
C. Bathroom 9
D. Other 1

8. Did the household own a moped, car A. The household owns a car or van 15
or van in good working order in the last 3 months? B. The household owns a moped and does not own a car or van 9

C. None 0
9. Did the household own a fan in good working A. Yes 6
order in the last 3 months? B. No 0
10. Did the household own a bed in good working A. Yes 4
order in the last 3 months? B. No 0
PPI Index Sum of points

Notes: The points provided here are those for the National Poverty Line.
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Table A4: Summary Statistics - Poverty Measures

Urban Rural
(1) (2)

Consumption Expenditures
Value of food expenditure in the last week 15.43 13.17

(8.12) (7.20)
Value of conspicuous expenditures in the last month 2.47 2.59

(3.29) (2.74)
- Communication expenditures 1.09 1.00

(1.25) (1.39)
- Entertainment expenditures (concert, bar, cinema, games) 0.22 0.29

(1.55) (0.91)
- Beauty products/hairdresser expenditures 0.48 0.75

(0.79) (1.40)
- Charitable expenditures 0.67 0.55

(2.38) (1.18)
Spending on durables in the last 12 months 2.34 2.10

(3.00) (2.38)
- HH expenditures on clothes/shoes 1.10 1.34

(1.09) (1.48)
- HH expenditures on furniture 0.39 0.27

(1.16) (0.84)
- HH expenditures on school fees 0.89 0.52

(2.80) (1.35)
Value of food expenditure per capita in the last week 3.76 3.74

(2.89) (3.39)
Spending per capita on durables in the last 12 months 0.53 0.61

(0.67) (1.46)
Indices
PMT Index 13.23 13.13

(0.43) (0.44)
PPI Index 37.13 28.70

(9.55) (10.64)
Other variables
HH’s head unemployed or inactive 0.20 0.15

(0.40) (0.36)
Number of mobile phones per capita 0.81 0.82

(0.47) (0.48)
Number of observations 294 213

Notes: Consumption expenditures reported in 1,000 CFA per week.
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Table A5: How do Respondents Think About Poverty?

Share of respondents
(1)

Uncertain about their ranking 0.09
Own poverty’s perceptions

Consider their household to be poor 0.29
Consider their household to be poorer than neighbors 0.21
Think that other households consider their household to be poor 0.21

Criteria used to classify
Household expressed their financial problems 0.49
Household members’ health 0.14
Household head’s occupation 0.49
Households’ daily number of meals 0.19
Household children’s school enrollment 0.07

Respondents’ own definition of poverty
Food deprivations 0.80
No decent housing 0.31
Unresolved health problems 0.43
No proper toilet/bathroom 0.16

Knowledge about neighbors
# of neighbors listed in total 5.75

% of neighbors they regularly visit 0.56
% of neighbors receive health/money advice from 0.44
% of neighbors they’d ask money from 0.38

Number of observations 507

Notes: Respondents to the March 2020 ranking survey were asked to define poverty in their own
words. Their answers were subsequently turned into categories by the research team. The Table
displays the proportion of respondents who mention each of the listed items as associated with
poverty.
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Table A6: EA-level summary statistics in the Côte d’Ivoire ranking exercise

(1)
Number of intended targets per EA 14.00

(0.00)
Number of observers per EA 8.65

(4.26)
Overlap in coverage between observers >= 2 0.31

(0.23)
Overlap in coverage between observers = 1 0.15

(0.16)
Overlap in coverage between observers = 0 0.54

(0.23)
% with full Agreement on ij pairs 0.24

(0.43)
Observations (EAs) 34 1

: The extent of overlap in coverage between observers refers
to the share of target households that are ranked by at least 2
observers, 1, or none. Full agreement across observers is the
proportion of responses in which both observers state that i¡j
among all pairwise ranks reported by individual observers.

Table A7: Reconstructed aggregate rankings
Number of ranked households who are richer or poorer than the target household

EA 2 richer poorer EA 4 richer poorer EA 6 richer poorer EA 7 richer poorer EA 8 richer poorer EA 9 richer poorer EA 12 richer poorer
201 2 11 201 0 9 201 10 10 201 10 2 201 0 5 205 4 4 203 4 1
202 1 12 202 5 3 202 13 0 202 10 11 203 1 5 208 0 6 204 1 2
203 0 13 203 3 5 203 10 10 203 10 11 207 1 5 209 5 0 205 5 0
204 10 10 204 2 7 206 10 10 204 10 11 209 2 5 210 3 5 305 0 3
205 3 10 205 5 0 207 12 2 205 11 1 211 12 5 211 2 2 307 0 2
206 10 10 206 6 0 208 11 3 206 10 11 212 11 2 212 1 7 308 0 2
208 10 10 207 1 8 209 13 0 207 10 11 213 10 3 213 8 1
209 10 10 209 7 0 210 10 10 208 1 11 214 8 4 301 1 0
210 12 1 210 6 1 211 2 11 212 12 0 301 0 6 303 0 1
211 14 0 211 3 5 302 10 10 302 10 11 302 0 6 304 6 2
212 10 5 303 0 10 303 10 0 304 13 0 306 1 3
213 11 3 304 10 4 304 10 11 306 0 4 307 9 0
214 11 3 308 1 12 305 0 12 307 0 6 901 0 9
301 0 10 309 3 0 903 0 11 308 0 6
302 0 10
902 13 0

EA 14 richer poorer EA 19 richer poorer EA 20 richer poorer EA 21 richer poorer EA 30 richer poorer EA 31 richer poorer EA 32 richer poorer
202 5 3 201 0 8 201 6 1 202 7 2 201 0 10 201 1 9 201 12 0
203 5 7 205 1 3 203 7 0 203 1 3 203 13 10 202 12 0 202 9 1
207 9 0 206 2 2 204 6 2 204 0 4 204 13 10 203 6 5 203 0 7
209 7 1 208 4 0 205 6 12 205 0 6 205 13 10 204 11 4 205 7 7
210 6 2 211 1 2 206 0 12 207 3 9 206 0 11 205 7 1 206 7 7
211 5 7 212 3 0 207 6 12 208 10 1 207 13 10 206 0 8 207 7 1
214 0 1 213 5 1 208 0 12 210 4 5 208 13 10 208 4 6 209 7 7
303 0 7 214 0 3 209 6 12 211 5 2 209 13 10 211 3 7 214 1 1
304 5 7 302 3 1 210 6 12 301 3 9 210 13 10 212 11 4 302 0 7
305 0 7 303 6 0 214 7 0 302 5 2 211 1 10 214 11 4 303 1 2
304 2 3 304 2 3 301 6 1 303 3 9 212 13 10 302 0 4 304 7 7
902 0 4 902 0 4 302 6 0 304 11 0 213 13 10 305 2 6 306 0 7

303 7 0 214 13 10 902 0 10 903 0 4
902 7 0

Notes: This Table reports the reconstructed rankings for the most informative enumeration areas (EAs). In each EA column appears the id code of the household in that enumeration area. Numbers from 201 to
214 represent individuals from the individual or listing surveys. Numbers above 301 were given to respondents added on the spot. Numbers from 901 and above are key informants who appear in this Table because
they self-ranked.
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Table A8: Relative Rank vs. Relative Survey-Measured Poverty: Pair-Level

Difference j - i in: Social exp Durables Total cons Was given food Food worries Days skipped Improvement
per ca per ca per ca (yes) (yes) in food

Reported rank -0.345* -0.149 -0.275 -0.064** 0.006 0.496 0.042
(0.183) (0.105) (0.514) (0.032) (0.053) (1.452) (0.090)

log(distance) 0.021 0.002 0.094 -0.002 -0.003 -0.535* -0.014
(0.039) (0.024) (0.107) (0.007) (0.013) (0.310) (0.021)

Constant 0.222 0.224* 0.369 0.008 0.003 1.661 0.044
(0.265) (0.124) (0.692) (0.044) (0.074) (1.790) (0.118)

R2 0.049 0.006 0.006 0.006 0.000 0.011 0.001
Observations 691 691 691 650 650 639 650

Constructed rank -0.388** -0.186** -0.816* -0.081*** -0.006 -1.200 0.154**
(0.158) (0.085) (0.420) (0.027) (0.045) (1.267) (0.076)

log(distance) -0.002 0.004 0.012 -0.003 -0.015 -1.181*** -0.014
(0.034) (0.021) (0.095) (0.006) (0.011) (0.404) (0.018)

Constant 0.243 0.169 0.807 0.029 0.094 5.789*** -0.056
(0.232) (0.114) (0.608) (0.038) (0.066) (2.212) (0.103)

R2 0.022 0.007 0.006 0.012 0.002 0.022 0.005
Observations 1014 1014 1014 960 960 945 960

Notes: We report two separate regressions for each constructed variable of aggregated rankings, as described in Section 6.
The reported rank variable is the share of reported ranks showing j richer than i. The constructed rank variable is a dummy
equals to 1 if j is ranked richer than i (including the case where it is both). A negative difference indicates that j is ranked
poorer than i. All dependent variables are calculated as the value for household j minus the value for household i: a positive
difference means that i is poorer than j. Social expenditures Total of consumption expenditures collected with a one month
recall period: telecom, beauty products, entertainment, charitable contributions. Annual expenditures: Total of consumtion
expenditures collected with a one year recall period: shoes and clothing, furniture, school fees. Total consumption: Weekly
expenditures x 52 + monthly expenditures x 12 + annual expenditures. We then divide by the number of household members
(adults and children). Was given food (yes): Dummy equal to 1 if members of the household have received free food from
other households or organizations. Food worries (yes): Dummy equal to 1 if respondents answers yes to question. Days
skipped: Number of days with skipped meals over the last three months. Improvement in food: Likert scale from 1 (much
worse) to 5 (much better) on whether food situation of the respondentś household has improved relative to previous year.
Robust standard errors are shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A9: Do estimated ranks predict survey-measured poverty?
Levels of: (1) (2) (3) (4)

Food exp Months food PMT PPI
per ca short index index

Ranks obtained by 0.015 -0.032 0.012* 0.167
pairwise method (0.050) (0.051) (0.007) (0.162)

log(distance) 0.019 -0.117 0.010 -0.283
(0.092) (0.080) (0.015) (0.348)

Constant 3.824*** 2.019*** 13.114*** 35.315***
(0.585) (0.528) (0.088) (1.972)

R2 0.001 0.011 0.058 0.013
Observations 223 215 155 223

Levels of: (1) (2) (3) (4)
Food exp Months food PMT PPI
per ca short index index

Ranks obtained 0.464 0.011 0.146 3.914
by Borda count (1.037) (0.666) (0.111) (2.745)

log(distance) 0.019 -0.121 0.012 -0.279
(0.092) (0.080) (0.015) (0.347)

Constant 3.600*** 2.056*** 13.025*** 33.379***
(0.630) (0.622) (0.089) (2.212)

R2 0.002 0.008 0.040 0.017
Observations 223 215 155 223

Notes: Each column is a regression of a survey-measured poverty variable on estimated ranks. The log(distance) is
used as control. The top panel uses ranks obtained using the pairwise method, the bottom panel uses ranks obtained
using the Borda count method, as described in Section 2.3. Only the surveyed respondents for which we estimated
a rank are included in these regressions. A high relative rank means the individual is ranked richer. The dependent
variables are as follows: Food expenditures: Total of consumption expenditures on staples, meat, vegetables, fruits,
drinks, alcohol over a one week recall period: . Months food short: Number of months the household experienced a
food shortage over the last twelve months. PPI and PMT indices are computed following the methodology described
in Section 4.3. For comparability purposes, the estimation samples are restricted to individuals ranked by both
methods. Robust standard errors are shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A10: Can peer rankings identify those ranked the median? Omitting self-ranks)

Ranked Below the Median According to:

PMT PPI Food Expenditure
Index Index Per Capita

Panel A.

Household ranked below me-
dian by pairwise method

0.127 0.101 0.020

(0.081) (0.067) (0.067)
Constant 0.406*** 0.410*** 0.458***

(0.049) (0.041) (0.042)

Observations 161 236 236

Panel B.

Household not ranked by pair-
wise method

0.081 0.048 0.061

(0.084) (0.044) (0.044)
Constant 0.441*** 0.428*** 0.445***

(0.039) (0.032) (0.032)

Observations 207 507 507

Notes: In the first two panels, we create a dummy equal to 1 if the aggregate pairwise ranking puts the household below the
median of its EA. It is zero if the household is ranked at or above the median and missing if the household is not ranked by
the pairwise method. We construct the aggregated ranking as the relative position of individual i in the constructed network,
i.e., how many people can be ranked as poorer than i, minus how many can be ranked richer. Only individuals ranked by
at least one other respondent are considered, and we here exclude the self-ranks. We run OLS regressions of this dummy on
a dummy for whether the household is below the median based on one of the survey measures (PMT in column 1, PPI in
column 2, and the food expenditure per capita in column 3). The table reads as follows: individuals ranked below the median
of the aggregate peer ranking are 12.7 percentage points more likely to be below the median of the PMT score (Column 1). In
the bottom panel, the dependent variable is a dummy equal to 1 if the household was not ranked by any observer. Robust
standard errors are shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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B The Newman Algorithm

In the empirical part of the paper, we compare how our proposed pairwise method performs
to another pairwise algorithm commonly used, outside of economics, to rank alternatives
when only some pairs have been ranked relative to each other. Of particular relevance to us
is the Zermelo (1929) algorithm, which has been used extensively to rank individuals, teams,
or objects in a variety of contexts that include sports, chess, and consumer choices. The
Bradley and Terry (1952) model provides a multinomial logit likelihood foundation for this
algorithm, which should thus be seen as a parametric estimator. Here we use an improvement
to the algorithm introduced by Newman (2022) because of its simplicity and speed.

This algorithm works as follows. Suppose we have pairwise rankings over many ij pairs
from a variety of observers. Let wij be the number of observers who rank i above j. Let πi

and πj denote the (unknown) income of i and j based on these observations. The likelihood
of observing the wij realizations based on a vector of incomes πi can be written:

P ({wij} | {πi}) =
∏
ij

(
πi

πi + πj

)wij

(12)

While the log-likelihood of the above expression has no close-form solution, Zermelo (1929)
has shown that it can be solved by simple iteration on the vector of πi’s. Newman (2022)
proposes to rewrite this algorithm as:

π′
i =

∑
j wijπj/(πi + πj)∑
j wij/(πi + πj)

(13)

where π′
i denotes the revised guess and πi the previous guess. Newman (2022) proves that

this algorithm converges. He also offers a modification of this algorithm to allow for ties,
that is, pairs ranked equal by some observers. In both cases, the result of this algorithm is
a unique aggregate ranking in the form of a series of perfectly ranked estimates of the πi’s.
This algorithm, however, fails to rank all the alternatives when coverage is too sparse. It
also does not provide a measure of precision of the resulting estimates.
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C Network Figures

Targeted households (i.e., those on which we have listing or survey information) are identified
in the graphs by the letter A. Households that were added as external observers for the sole
purpose of the ranking exercise are identified in the graphs by the letter B. Key informants are
identified by the letter C. No consumption information was collected on B and C observers.

13



Figure C1: Directed graph of relative rankings - Urban Slums
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Figure C2: Directed graph of relative rankings - Rural Villages
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